Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Helps Weed Our National Garden

17.02.2006


When people think of NASA, they usually think of space exploration. But NASA also explores our home planet, and the results of that exploration help other agencies provide substantial benefits to our society and economy. An example of NASA’s Earth research leading to new benefits is in the area of the control of non-native plants such as the plants that may be reducing water supplies in the western United States.

NASA makes its earth observations, modeling and computational capabilities available to enhance the tools other agencies use to control invasive plant species. An "invasive species" is non-native (alien) to the ecosystem in which it’s found. Often, invasive species cause economic or environmental harm or harm to human health. Invasive species can be plants, animals, and other organisms (e.g., microbes). Human actions are the primary means of invasive species introductions.

Invasive plant species traditionally are located, identified and monitored by manual ground surveys. Such surveys are effective, but expensive, timely and difficult to manage over large areas. Now, a new tool developed by the U.S. Geological Survey (USGS) is taking advantage of observations from NASA satellites and NASA systems engineering to provide a service for land managers that predicts quickly and inexpensively the location and spread of invasive plants over regional areas. The tool, called the Invasive Species Forecasting System (ISFS) was recently used to make the first predictive map of tamarisk habitat in the United States.



Tamarisk is a large shrub to small tree native to Africa and Eurasia. It was introduced in the western U.S. in the early 1800s as "ornamental vegetation" and for wind and erosion control. Tamarisk has since spread and can be found from Minnesota to California and from Mexico to Canada. The U.S. Department of Agriculture recently identified tamarisk as one of the most harmful invasive species in the nation, because the plant’s long roots tap into underground aquifers. Its groundwater-absorbing qualities may be adding to the severity of the drought in the western U.S. Tamarisk also increases the salt concentration of the soil and degrades habitats for native species along river systems.

"The ISFS combines NASA satellite data with tens of thousands of field sampling measurements, which are then used to analyze past and present distributions of non-native plants and predict their future growth patterns," said Tom Stohlgren, director of the USGS’ National Institute of Invasive Species Science (NIISS). Land managers and others can use the ISFS to generate color-coded maps to help predict and manage the spread of troublesome invasive species.

The ISFS uses observations and data products from NASA’s Terra, Aqua, and Earth Observing-1 satellites, and the USGS-operated Landsat satellites, together with field data from government and non-government contributors. All of these satellites observe and measure sunlight reflected by plants and the environments in which they are growing. The satellites are able to "lock in" on unique aspects of the reflected light to determine tamarisk’s current locations as well as habitats that are vulnerable to invasion.

During the blooming season for tamarisk, ISFS-generated maps predicting tamarisk locations matched observations of the plant in the field. These predictive maps are an important new tool for land managers involved with tamarisk-related control and restoration efforts. "Satellite data coupled with computer modeling helps us understand where tamarisk is likely to be growing, even in remote locations that field researchers cannot easily reach," said John Schnase, principal investigator of the ISFS project at NASA’s Goddard Space Flight Center in Greenbelt, Md.

The ISFS uses invasive species occurrence and abundance data from the Global Organism Detection and Monitoring System developed by the USGS Fort Collins Science Center and Colorado State University. This monitoring system is an on-line database that allows people to report sightings of tamarisk or other invasive species to USGS scientists, who then review the observations and incorporate validated new data into ISFS map products.

Currently, USGS is using the ISFS to predict the distribution of other invasive species such as cheatgrass, Canadian star thistle, and certain aquatic species. "With this new technology USGS is significantly enhancing its ability to support invasive species management. The enhancements in the ISFS are the result of the use of NASA observations, model output, and systems engineering," said Ed Sheffner, the program manager for invasive species in the Applied Sciences Program at NASA Headquarters in Washington.

NASA and USGS (through the Department of the Interior) are members of the National Invasive Species Council. It is an interdepartmental council with 13 cabinet-level member organizations. Formed by Executive Order in 1999, the council facilitates coordination and provides leadership for federal agencies working on invasive species issues.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2005/invasive_species.html

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>