Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Helps Weed Our National Garden

17.02.2006


When people think of NASA, they usually think of space exploration. But NASA also explores our home planet, and the results of that exploration help other agencies provide substantial benefits to our society and economy. An example of NASA’s Earth research leading to new benefits is in the area of the control of non-native plants such as the plants that may be reducing water supplies in the western United States.

NASA makes its earth observations, modeling and computational capabilities available to enhance the tools other agencies use to control invasive plant species. An "invasive species" is non-native (alien) to the ecosystem in which it’s found. Often, invasive species cause economic or environmental harm or harm to human health. Invasive species can be plants, animals, and other organisms (e.g., microbes). Human actions are the primary means of invasive species introductions.

Invasive plant species traditionally are located, identified and monitored by manual ground surveys. Such surveys are effective, but expensive, timely and difficult to manage over large areas. Now, a new tool developed by the U.S. Geological Survey (USGS) is taking advantage of observations from NASA satellites and NASA systems engineering to provide a service for land managers that predicts quickly and inexpensively the location and spread of invasive plants over regional areas. The tool, called the Invasive Species Forecasting System (ISFS) was recently used to make the first predictive map of tamarisk habitat in the United States.



Tamarisk is a large shrub to small tree native to Africa and Eurasia. It was introduced in the western U.S. in the early 1800s as "ornamental vegetation" and for wind and erosion control. Tamarisk has since spread and can be found from Minnesota to California and from Mexico to Canada. The U.S. Department of Agriculture recently identified tamarisk as one of the most harmful invasive species in the nation, because the plant’s long roots tap into underground aquifers. Its groundwater-absorbing qualities may be adding to the severity of the drought in the western U.S. Tamarisk also increases the salt concentration of the soil and degrades habitats for native species along river systems.

"The ISFS combines NASA satellite data with tens of thousands of field sampling measurements, which are then used to analyze past and present distributions of non-native plants and predict their future growth patterns," said Tom Stohlgren, director of the USGS’ National Institute of Invasive Species Science (NIISS). Land managers and others can use the ISFS to generate color-coded maps to help predict and manage the spread of troublesome invasive species.

The ISFS uses observations and data products from NASA’s Terra, Aqua, and Earth Observing-1 satellites, and the USGS-operated Landsat satellites, together with field data from government and non-government contributors. All of these satellites observe and measure sunlight reflected by plants and the environments in which they are growing. The satellites are able to "lock in" on unique aspects of the reflected light to determine tamarisk’s current locations as well as habitats that are vulnerable to invasion.

During the blooming season for tamarisk, ISFS-generated maps predicting tamarisk locations matched observations of the plant in the field. These predictive maps are an important new tool for land managers involved with tamarisk-related control and restoration efforts. "Satellite data coupled with computer modeling helps us understand where tamarisk is likely to be growing, even in remote locations that field researchers cannot easily reach," said John Schnase, principal investigator of the ISFS project at NASA’s Goddard Space Flight Center in Greenbelt, Md.

The ISFS uses invasive species occurrence and abundance data from the Global Organism Detection and Monitoring System developed by the USGS Fort Collins Science Center and Colorado State University. This monitoring system is an on-line database that allows people to report sightings of tamarisk or other invasive species to USGS scientists, who then review the observations and incorporate validated new data into ISFS map products.

Currently, USGS is using the ISFS to predict the distribution of other invasive species such as cheatgrass, Canadian star thistle, and certain aquatic species. "With this new technology USGS is significantly enhancing its ability to support invasive species management. The enhancements in the ISFS are the result of the use of NASA observations, model output, and systems engineering," said Ed Sheffner, the program manager for invasive species in the Applied Sciences Program at NASA Headquarters in Washington.

NASA and USGS (through the Department of the Interior) are members of the National Invasive Species Council. It is an interdepartmental council with 13 cabinet-level member organizations. Formed by Executive Order in 1999, the council facilitates coordination and provides leadership for federal agencies working on invasive species issues.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2005/invasive_species.html

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>