Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better fuel cells through quantum mechanics

17.02.2006


Fuel cells must be made more efficient if they are to provide a viable alternative to traditional energy sources, and the choice of materials is crucial to how efficient they are. New findings from scientists at the Royal Institute of Technology (KTH) in Stockholm, Uppsala University, and Linköping University are opening new ways of finding optimal materials for better fuel cells much more quickly.


In the future solid oxide fuel cells may supply residential areas like Stockholm with electricity. In a solid oxide fuel cell, chemically stored energy is converted to electricity with a high degree of efficiency. The figure illustrates this with the chemical reaction between oxygen and hydrogen, which yields water (plus electricity). The article by Andersson et al. explains how the electrolyte should be constructed for optimal performance.



Using methods of calculation from quantum mechanics, the researchers managed to find a better way of understanding the connection between the atomic structure of an element and its capacity to conduct oxygen ions, which is key to the efficiency of fuel cells that use solid oxides as electrolyte materials (so-called solid oxide fuel cells).

The faster the transport of oxygen ions through the material occurs, the better the fuel cell will function. The findings are now being presented in the prestigious American scientific journal Proceedings of the National Academy of Sciences, PNAS.


The development of better materials for environmentally friendly energy sources is high on the agenda all over the world. Fuel cells are an example of a system that converts chemical energy directly to electricity in a highly efficient way (for instance, hydrogen + oxygen = water + electricity).

Thus far scientists have found suitable electrolyte materials by trial and error and through empirical experience, which has meant that progress has been slow. Many of the materials used today have been in use for 25 years. The new calculation methods open up entirely new vistas.

“The methods we use to theoretically calculate an element’s capacity to conduct ions enable us to test many more substances than before. Even though the calculations take considerable time, it is both faster and cheaper than testing all of these materials in practice,” says David Andersson, a doctoral student at the Section for Applied Materials Physics at KTH, one of the scientists behind the article.

The scientists have studied how the admixture of tiny quantities of other elements (dopants) to cerium oxide, CeO2, affects how easily oxygen ions can be transported through the material. The quantum mechanical calculations indicate what type of elements may be suitable as dopants, a huge help in work with optimizing future solid oxide fuel cells.

New electrolyte materials not only increase the efficiency of fuel cells; they also help open up new spheres of use. Today’s solid oxide fuel cells normally work at temperatures around 1,000 degrees centigrade. This places great demands on the materials surrounding the fuel cell, making them expensive.

“With other electrolyte materials than those we have today, the working temperature and thereby the cost of the materials surrounding the fuel cells could be brought down. Lower temperatures would also open up the possibility of portable variants of fuel cells,” says David Andersson.

These new findings also make it possible to improve other applications where oxygen ion transport is important, such as sensors that meter the oxygen content of various environments.

Magnus Myrén | alfa
Further information:
http://www.kth.se

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>