Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better fuel cells through quantum mechanics

17.02.2006


Fuel cells must be made more efficient if they are to provide a viable alternative to traditional energy sources, and the choice of materials is crucial to how efficient they are. New findings from scientists at the Royal Institute of Technology (KTH) in Stockholm, Uppsala University, and Linköping University are opening new ways of finding optimal materials for better fuel cells much more quickly.


In the future solid oxide fuel cells may supply residential areas like Stockholm with electricity. In a solid oxide fuel cell, chemically stored energy is converted to electricity with a high degree of efficiency. The figure illustrates this with the chemical reaction between oxygen and hydrogen, which yields water (plus electricity). The article by Andersson et al. explains how the electrolyte should be constructed for optimal performance.



Using methods of calculation from quantum mechanics, the researchers managed to find a better way of understanding the connection between the atomic structure of an element and its capacity to conduct oxygen ions, which is key to the efficiency of fuel cells that use solid oxides as electrolyte materials (so-called solid oxide fuel cells).

The faster the transport of oxygen ions through the material occurs, the better the fuel cell will function. The findings are now being presented in the prestigious American scientific journal Proceedings of the National Academy of Sciences, PNAS.


The development of better materials for environmentally friendly energy sources is high on the agenda all over the world. Fuel cells are an example of a system that converts chemical energy directly to electricity in a highly efficient way (for instance, hydrogen + oxygen = water + electricity).

Thus far scientists have found suitable electrolyte materials by trial and error and through empirical experience, which has meant that progress has been slow. Many of the materials used today have been in use for 25 years. The new calculation methods open up entirely new vistas.

“The methods we use to theoretically calculate an element’s capacity to conduct ions enable us to test many more substances than before. Even though the calculations take considerable time, it is both faster and cheaper than testing all of these materials in practice,” says David Andersson, a doctoral student at the Section for Applied Materials Physics at KTH, one of the scientists behind the article.

The scientists have studied how the admixture of tiny quantities of other elements (dopants) to cerium oxide, CeO2, affects how easily oxygen ions can be transported through the material. The quantum mechanical calculations indicate what type of elements may be suitable as dopants, a huge help in work with optimizing future solid oxide fuel cells.

New electrolyte materials not only increase the efficiency of fuel cells; they also help open up new spheres of use. Today’s solid oxide fuel cells normally work at temperatures around 1,000 degrees centigrade. This places great demands on the materials surrounding the fuel cell, making them expensive.

“With other electrolyte materials than those we have today, the working temperature and thereby the cost of the materials surrounding the fuel cells could be brought down. Lower temperatures would also open up the possibility of portable variants of fuel cells,” says David Andersson.

These new findings also make it possible to improve other applications where oxygen ion transport is important, such as sensors that meter the oxygen content of various environments.

Magnus Myrén | alfa
Further information:
http://www.kth.se

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>