Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside an Avalanche

16.02.2006


The winter blanket of snow covering the Alps is stunningly beautiful– and incredibly dangerous. In 2004-2005, 26 people died in avalanches in Switzerland alone. The victims range from occasional snow-boarders catching some powder off-piste to backcountry ski guides with years of experience. In this mountainous country, avalanches also pose a serious public danger. They can bury people in their homes, cut off access roads or even flatten whole villages. Scientists have put great effort into trying to understand the physical mechanisms at work in avalanches, particularly in the domain of fluid mechanics, in an attempt to improve our ability to predict and manage avalanche danger. But progress is limited because the computer models that simulate complex fluid movement are still quite rudimentary.



EPFL professor Christophe Ancey, an expert in rheology, or flow phenomena, is working to improve that situation. His team is building an installation that will generate avalanches in the comfort of the laboratory. Unlike natural avalanches, no two of which are alike, and all of which are quite uncomfortable in scale and force, all the variables involved in these slides can be controlled and the same avalanche can be studied repeatedly. The simulation data will be used to construct a new numerical model capable of describing the avalanche’s dynamic behavior.

The laboratory system Ancey is developing is based on the “dam-break” concept, in which a viscous fluid is poured onto a steeply inclined plane. The blue ooze flowing down the slope may not look like snow, but it deforms in the same way an avalanche does, and shares the same physics – the highly complex, non-equilibrium, non-linear flow that is characteristic of heavy snow and mud. “No existing numerical model can reproduce what’s happening in even this simple setup,” explains Ancey. “As a first step, we need to be able to reproduce what we observe, and with a model that takes only hours, not days, to run.”


The model Ancey constructs from the simulation data will be tested against reality in the Sionne Valley in the Swiss Alps. There, in an avalanche-prone area, the Swiss Federal Institute for the Study of Snow and Avalanches has set up an amazing measurement station. A narrow wedge steel construction, a 20m tall pylon and a bunker equipped with a variety of sensors, video and Doppler radar have been placed in an avalanche track. As an avalanche pounds down the mountainside, this equipment will collect a wide range of data. Ancey’s model will predict the progression of this same avalanche, and the comparison with the data will reveal how well his model captured reality.

In this second, reality-testing phase of his project, Ancey will collaborate with EPFL Professor Eduardo Charbon, who has developed inexpensive new-generation sensors that can be placed across the snow surface before the avalanche is triggered. These sensors will track the velocity inside the avalanche, something that has never been possible before. The data can then be analyzed and used to further improve Ancey’s dynamic model.

“It is important to change the way we understand, anticipate and manage natural hazards,” explains Ancey. “Several elements interact to cause an accident or a natural disaster. We often think that we can calibrate the models we use for prediction using data from past events. But if we really want to be able to predict what could happen, say in a scenario involving climate change, we must be able to understand and explain the physics behind natural phenomena, instead of just describing them. That’s what we’re doing in this research program.”

In the long run, Ancey’s laboratory research, combined with the terrain-based testing and analysis, will be used to develop a diagnostic system that can help decision-makers better predict and prepare for these kinds of natural disasters. Important political decision-making, such as approving development in avalanche or flood-prone areas, requires accurate risk assessment. And the physics-based approach being developed by Ancey will ultimately provide decision-makers with a tool they can confidently use to evaluate the risk of natural disaster in a variety of potential scenarios.

Launched in 2004, this project is financed by the EPFL and the Swiss National Science Foundation, as part of the latter’s National Center of Competence in Research in Mobile Information and Communication Systems.

Christophe Ancey | alfa
Further information:
http://actualites.epfl.ch/index.php?module=Presseinfo&func=view_com&id=323

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>