Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside an Avalanche

16.02.2006


The winter blanket of snow covering the Alps is stunningly beautiful– and incredibly dangerous. In 2004-2005, 26 people died in avalanches in Switzerland alone. The victims range from occasional snow-boarders catching some powder off-piste to backcountry ski guides with years of experience. In this mountainous country, avalanches also pose a serious public danger. They can bury people in their homes, cut off access roads or even flatten whole villages. Scientists have put great effort into trying to understand the physical mechanisms at work in avalanches, particularly in the domain of fluid mechanics, in an attempt to improve our ability to predict and manage avalanche danger. But progress is limited because the computer models that simulate complex fluid movement are still quite rudimentary.



EPFL professor Christophe Ancey, an expert in rheology, or flow phenomena, is working to improve that situation. His team is building an installation that will generate avalanches in the comfort of the laboratory. Unlike natural avalanches, no two of which are alike, and all of which are quite uncomfortable in scale and force, all the variables involved in these slides can be controlled and the same avalanche can be studied repeatedly. The simulation data will be used to construct a new numerical model capable of describing the avalanche’s dynamic behavior.

The laboratory system Ancey is developing is based on the “dam-break” concept, in which a viscous fluid is poured onto a steeply inclined plane. The blue ooze flowing down the slope may not look like snow, but it deforms in the same way an avalanche does, and shares the same physics – the highly complex, non-equilibrium, non-linear flow that is characteristic of heavy snow and mud. “No existing numerical model can reproduce what’s happening in even this simple setup,” explains Ancey. “As a first step, we need to be able to reproduce what we observe, and with a model that takes only hours, not days, to run.”


The model Ancey constructs from the simulation data will be tested against reality in the Sionne Valley in the Swiss Alps. There, in an avalanche-prone area, the Swiss Federal Institute for the Study of Snow and Avalanches has set up an amazing measurement station. A narrow wedge steel construction, a 20m tall pylon and a bunker equipped with a variety of sensors, video and Doppler radar have been placed in an avalanche track. As an avalanche pounds down the mountainside, this equipment will collect a wide range of data. Ancey’s model will predict the progression of this same avalanche, and the comparison with the data will reveal how well his model captured reality.

In this second, reality-testing phase of his project, Ancey will collaborate with EPFL Professor Eduardo Charbon, who has developed inexpensive new-generation sensors that can be placed across the snow surface before the avalanche is triggered. These sensors will track the velocity inside the avalanche, something that has never been possible before. The data can then be analyzed and used to further improve Ancey’s dynamic model.

“It is important to change the way we understand, anticipate and manage natural hazards,” explains Ancey. “Several elements interact to cause an accident or a natural disaster. We often think that we can calibrate the models we use for prediction using data from past events. But if we really want to be able to predict what could happen, say in a scenario involving climate change, we must be able to understand and explain the physics behind natural phenomena, instead of just describing them. That’s what we’re doing in this research program.”

In the long run, Ancey’s laboratory research, combined with the terrain-based testing and analysis, will be used to develop a diagnostic system that can help decision-makers better predict and prepare for these kinds of natural disasters. Important political decision-making, such as approving development in avalanche or flood-prone areas, requires accurate risk assessment. And the physics-based approach being developed by Ancey will ultimately provide decision-makers with a tool they can confidently use to evaluate the risk of natural disaster in a variety of potential scenarios.

Launched in 2004, this project is financed by the EPFL and the Swiss National Science Foundation, as part of the latter’s National Center of Competence in Research in Mobile Information and Communication Systems.

Christophe Ancey | alfa
Further information:
http://actualites.epfl.ch/index.php?module=Presseinfo&func=view_com&id=323

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>