Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shopping list gets longer – not less choosy– in some of world’s largest fisheries

15.02.2006


When fishing boats return with catches of increasingly less-valuable fish, the commonly held notion is that the more valuable species have been fished out. This, however, wasn’t true in two-thirds of the world’s large marine ecosystems selected for study by University of Washington researchers.

Instead, the composition of what was landed changed because fishermen chose to target additional kinds of fish. Landings of the more valuable fish remained the same, or even increased, but that may not be sustainable if managers can’t come up with effective strategies, says Timothy Essington, UW assistant professor of aquatic and fishery sciences. Results of the National Science Foundation-funded project appear this week in the Proceedings of the National Academy of Sciences.

"We shouldn’t remain preoccupied with the model of fishing down the food web that assumes the largest, most valuable fish have disappeared," Essington says. "That ignores both what’s happening in the majority of cases as well as the need to manage conflicting demands on ecosystems. These multiple impacts may be sustainable during the initial phases of fisheries development but can ultimately lead to collapse of the higher-value stocks if fisheries develop unchecked and without considering these interactions.



"Navigating these conflicts is moving to the forefront of contemporary marine fisheries management and conservation." Fishing down the food web emerged as a concern in the late 1990s when Daniel Pauly of the University of British Columbia published findings that global landings of fish were shifting from species higher in the food chain, such as halibut and tuna, to those lower in the food chain, such as herring and anchovies.

Pauly, who reviewed the paper for the authors before it was submitted to editors of the Proceedings of the National Academy, developed the method to compare food-web – or trophic – levels of what is landed. The approach considers only what is brought to shore and does not measure how many fish of various species are actually available.

Using Pauly’s method, Essington and UW graduate students Anne Beaudreau and John Wiedenmann, both co-authors on the paper, looked at data between 1950 and 2001. They found the trophic level was shifting downward for landings in 30 of the 48 large marine ecosystems in the world for which they could obtain reliable information. In a little more than two-thirds of those cases – 21 of the 30 ecosystems – the composition of the catch changed to include fish from lower trophic levels, yet the amount of fish from the higher trophic levels remained the same or increased.

Because the research considered only landings, the scientists can’t say if the stocks are plentiful or if the amounts were high for some other reason, such as an increase in the number of boats fishing the area.

In either case, Essington says, "We can’t ignore the policy implications of this common mechanism of sequentially adding species to what is being fished."

In the other nine of the 30 ecosystems the researchers found that high-trophic-level fish were, indeed, disappearing and forcing fishermen to turn to fish lower on the food web. The most spectacular example is the ecosystem in the North Atlantic where fishery collapses are common.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>