Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shopping list gets longer – not less choosy– in some of world’s largest fisheries

15.02.2006


When fishing boats return with catches of increasingly less-valuable fish, the commonly held notion is that the more valuable species have been fished out. This, however, wasn’t true in two-thirds of the world’s large marine ecosystems selected for study by University of Washington researchers.

Instead, the composition of what was landed changed because fishermen chose to target additional kinds of fish. Landings of the more valuable fish remained the same, or even increased, but that may not be sustainable if managers can’t come up with effective strategies, says Timothy Essington, UW assistant professor of aquatic and fishery sciences. Results of the National Science Foundation-funded project appear this week in the Proceedings of the National Academy of Sciences.

"We shouldn’t remain preoccupied with the model of fishing down the food web that assumes the largest, most valuable fish have disappeared," Essington says. "That ignores both what’s happening in the majority of cases as well as the need to manage conflicting demands on ecosystems. These multiple impacts may be sustainable during the initial phases of fisheries development but can ultimately lead to collapse of the higher-value stocks if fisheries develop unchecked and without considering these interactions.



"Navigating these conflicts is moving to the forefront of contemporary marine fisheries management and conservation." Fishing down the food web emerged as a concern in the late 1990s when Daniel Pauly of the University of British Columbia published findings that global landings of fish were shifting from species higher in the food chain, such as halibut and tuna, to those lower in the food chain, such as herring and anchovies.

Pauly, who reviewed the paper for the authors before it was submitted to editors of the Proceedings of the National Academy, developed the method to compare food-web – or trophic – levels of what is landed. The approach considers only what is brought to shore and does not measure how many fish of various species are actually available.

Using Pauly’s method, Essington and UW graduate students Anne Beaudreau and John Wiedenmann, both co-authors on the paper, looked at data between 1950 and 2001. They found the trophic level was shifting downward for landings in 30 of the 48 large marine ecosystems in the world for which they could obtain reliable information. In a little more than two-thirds of those cases – 21 of the 30 ecosystems – the composition of the catch changed to include fish from lower trophic levels, yet the amount of fish from the higher trophic levels remained the same or increased.

Because the research considered only landings, the scientists can’t say if the stocks are plentiful or if the amounts were high for some other reason, such as an increase in the number of boats fishing the area.

In either case, Essington says, "We can’t ignore the policy implications of this common mechanism of sequentially adding species to what is being fished."

In the other nine of the 30 ecosystems the researchers found that high-trophic-level fish were, indeed, disappearing and forcing fishermen to turn to fish lower on the food web. The most spectacular example is the ecosystem in the North Atlantic where fishery collapses are common.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>