Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shopping list gets longer – not less choosy– in some of world’s largest fisheries

15.02.2006


When fishing boats return with catches of increasingly less-valuable fish, the commonly held notion is that the more valuable species have been fished out. This, however, wasn’t true in two-thirds of the world’s large marine ecosystems selected for study by University of Washington researchers.

Instead, the composition of what was landed changed because fishermen chose to target additional kinds of fish. Landings of the more valuable fish remained the same, or even increased, but that may not be sustainable if managers can’t come up with effective strategies, says Timothy Essington, UW assistant professor of aquatic and fishery sciences. Results of the National Science Foundation-funded project appear this week in the Proceedings of the National Academy of Sciences.

"We shouldn’t remain preoccupied with the model of fishing down the food web that assumes the largest, most valuable fish have disappeared," Essington says. "That ignores both what’s happening in the majority of cases as well as the need to manage conflicting demands on ecosystems. These multiple impacts may be sustainable during the initial phases of fisheries development but can ultimately lead to collapse of the higher-value stocks if fisheries develop unchecked and without considering these interactions.



"Navigating these conflicts is moving to the forefront of contemporary marine fisheries management and conservation." Fishing down the food web emerged as a concern in the late 1990s when Daniel Pauly of the University of British Columbia published findings that global landings of fish were shifting from species higher in the food chain, such as halibut and tuna, to those lower in the food chain, such as herring and anchovies.

Pauly, who reviewed the paper for the authors before it was submitted to editors of the Proceedings of the National Academy, developed the method to compare food-web – or trophic – levels of what is landed. The approach considers only what is brought to shore and does not measure how many fish of various species are actually available.

Using Pauly’s method, Essington and UW graduate students Anne Beaudreau and John Wiedenmann, both co-authors on the paper, looked at data between 1950 and 2001. They found the trophic level was shifting downward for landings in 30 of the 48 large marine ecosystems in the world for which they could obtain reliable information. In a little more than two-thirds of those cases – 21 of the 30 ecosystems – the composition of the catch changed to include fish from lower trophic levels, yet the amount of fish from the higher trophic levels remained the same or increased.

Because the research considered only landings, the scientists can’t say if the stocks are plentiful or if the amounts were high for some other reason, such as an increase in the number of boats fishing the area.

In either case, Essington says, "We can’t ignore the policy implications of this common mechanism of sequentially adding species to what is being fished."

In the other nine of the 30 ecosystems the researchers found that high-trophic-level fish were, indeed, disappearing and forcing fishermen to turn to fish lower on the food web. The most spectacular example is the ecosystem in the North Atlantic where fishery collapses are common.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>