Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peat Absorbs Oil

14.02.2006


Oil and oil products spill often and in various places. These are plots in oil production areas and pipeline breaking locations and places of tanker wracks or crashes of consists, which carry oil products. At best, oil spillage falls on hard soil: it can be collected and somehow refined or, at the worst, buried. The case is much worse if the spillage takes place on water.



The oil film spreads out quickly to large distances, and it is very uneasy to collect. A thick film is removed by sea bulldozers by “scraping it off” water surface. As for a thin film, which produces iridescent spots, it is practically impossible to eliminate. By the way, its emergence does not require any disastrous events at all: a film may drift behind an ordinary motor-launch if its engine does not run well. A film several microns thick may seem to produce little impact. For water inhabitants, it emergence can mean certain death: it reduces oxygen dissolving in water drastically.

Therefore, the problem of fighting oil film is more than urgent. There is only one remedy for it: sorbent that is capable of taking in oil products. It is also desirable that the sorbent itself did not contaminate the environment and was able to turn carbohydrates into something quite harmless. Researchers of three institutes – Snezhinsk All-Russian Scientific Research Institite of Technical Physics (VNIITF), Novosibirsk State Research Center “Vector” and the Syktyvkar Institute of Biology (Komi Research Center, Ural Branch, Russian Academy of Sciences) with financial support from the International Science and Technology Center (ISTC) – managed to combine all three components of an ideal sorbent. Significant assistance was also provided by the US colleagues. Furthermore, the partner of the project – the Kirov Center for Ecological Initiatives “Press-Torf (Peat)” – even arranged production of sorbent trial lots.


The sorbent is based on peat – one of the most widespread materials in Russia, particularly in the North. Generated from remains of plants, peat doesn’t contaminate the environment by any means. Being an interim link in a series of carbohydrates transformations, which begin from dead plants and finish with anthracite, peat itself is capable of taking in oil rather well. After burning at definite temperatures (which are object of know-how), peat becomes so porous that each of its finest particles is able to absorb several times more oil film than it weighs.

However, there is a significant difficulty in working with peat: sorbent turns out to be very lightweight, it is extremely hard to disperse evenly across a large area. The task has been solved by engineers from Snezhinsk. They made special proportioning bunkers of different sizes: from the manual or, more precisely, shoulder option, reminding of a garden sprayer, through to industrial one, which is fixed on a fire-engine or a special motor-launch. The first modification fits oil-field workers, the bosses of which wish voluntarily or not (under the pressure of public opinion concerned with environment protection) to maintain cleanness in the area of oil well. The second modification is needed for purification of large water bodies’ surface. For example, the motor-launch with such a bunker on board proved itself very well during purification of the Neva river surface near the Palace Embankment. It is important to note that the sorbent is hydrophobic, i.e. it preserves floatation after it gets saturated with oil within several weeks, this fact allowing to collect it from water surface in a mechanical way using standard technology.

However, creation of the sorbent was only the first part of the effort. Biologist were involved in the second part. It is known that there are quite a lot of bacteria capable of eating up oil. Moreover, biologists are well aware of the cultures that do that best of all and are well adaptated to life in certain climatic conditions. Biologists from Syktyvkar and Novosibirsk were engaged in cultivation of such bacteria in particular, or more precisely, in selection of their correct community, including microfungi. They managed not only to select such a community, but also to develop technology for its growing and distribution in the peat sorbent. In case of using biosorbent, absorbed oil products are decomposed by oil destructor microorganisms within spring and summer period, which was confirmed by field trials carried out at the Usinsky oil field. The cost of such sorbent will certainly be much higher than that of a common one, but it guarantees complete and rapid decomposition of oil products.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Ecology, The Environment and Conservation:

nachricht Dead trees are alive with fungi
10.01.2018 | Helmholtz Centre for Environmental Research (UFZ)

nachricht Management of mountain meadows influences resilience to climate extremes
10.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>