Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Peat Absorbs Oil


Oil and oil products spill often and in various places. These are plots in oil production areas and pipeline breaking locations and places of tanker wracks or crashes of consists, which carry oil products. At best, oil spillage falls on hard soil: it can be collected and somehow refined or, at the worst, buried. The case is much worse if the spillage takes place on water.

The oil film spreads out quickly to large distances, and it is very uneasy to collect. A thick film is removed by sea bulldozers by “scraping it off” water surface. As for a thin film, which produces iridescent spots, it is practically impossible to eliminate. By the way, its emergence does not require any disastrous events at all: a film may drift behind an ordinary motor-launch if its engine does not run well. A film several microns thick may seem to produce little impact. For water inhabitants, it emergence can mean certain death: it reduces oxygen dissolving in water drastically.

Therefore, the problem of fighting oil film is more than urgent. There is only one remedy for it: sorbent that is capable of taking in oil products. It is also desirable that the sorbent itself did not contaminate the environment and was able to turn carbohydrates into something quite harmless. Researchers of three institutes – Snezhinsk All-Russian Scientific Research Institite of Technical Physics (VNIITF), Novosibirsk State Research Center “Vector” and the Syktyvkar Institute of Biology (Komi Research Center, Ural Branch, Russian Academy of Sciences) with financial support from the International Science and Technology Center (ISTC) – managed to combine all three components of an ideal sorbent. Significant assistance was also provided by the US colleagues. Furthermore, the partner of the project – the Kirov Center for Ecological Initiatives “Press-Torf (Peat)” – even arranged production of sorbent trial lots.

The sorbent is based on peat – one of the most widespread materials in Russia, particularly in the North. Generated from remains of plants, peat doesn’t contaminate the environment by any means. Being an interim link in a series of carbohydrates transformations, which begin from dead plants and finish with anthracite, peat itself is capable of taking in oil rather well. After burning at definite temperatures (which are object of know-how), peat becomes so porous that each of its finest particles is able to absorb several times more oil film than it weighs.

However, there is a significant difficulty in working with peat: sorbent turns out to be very lightweight, it is extremely hard to disperse evenly across a large area. The task has been solved by engineers from Snezhinsk. They made special proportioning bunkers of different sizes: from the manual or, more precisely, shoulder option, reminding of a garden sprayer, through to industrial one, which is fixed on a fire-engine or a special motor-launch. The first modification fits oil-field workers, the bosses of which wish voluntarily or not (under the pressure of public opinion concerned with environment protection) to maintain cleanness in the area of oil well. The second modification is needed for purification of large water bodies’ surface. For example, the motor-launch with such a bunker on board proved itself very well during purification of the Neva river surface near the Palace Embankment. It is important to note that the sorbent is hydrophobic, i.e. it preserves floatation after it gets saturated with oil within several weeks, this fact allowing to collect it from water surface in a mechanical way using standard technology.

However, creation of the sorbent was only the first part of the effort. Biologist were involved in the second part. It is known that there are quite a lot of bacteria capable of eating up oil. Moreover, biologists are well aware of the cultures that do that best of all and are well adaptated to life in certain climatic conditions. Biologists from Syktyvkar and Novosibirsk were engaged in cultivation of such bacteria in particular, or more precisely, in selection of their correct community, including microfungi. They managed not only to select such a community, but also to develop technology for its growing and distribution in the peat sorbent. In case of using biosorbent, absorbed oil products are decomposed by oil destructor microorganisms within spring and summer period, which was confirmed by field trials carried out at the Usinsky oil field. The cost of such sorbent will certainly be much higher than that of a common one, but it guarantees complete and rapid decomposition of oil products.

Sergey Komarov | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>