Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peat Absorbs Oil

14.02.2006


Oil and oil products spill often and in various places. These are plots in oil production areas and pipeline breaking locations and places of tanker wracks or crashes of consists, which carry oil products. At best, oil spillage falls on hard soil: it can be collected and somehow refined or, at the worst, buried. The case is much worse if the spillage takes place on water.



The oil film spreads out quickly to large distances, and it is very uneasy to collect. A thick film is removed by sea bulldozers by “scraping it off” water surface. As for a thin film, which produces iridescent spots, it is practically impossible to eliminate. By the way, its emergence does not require any disastrous events at all: a film may drift behind an ordinary motor-launch if its engine does not run well. A film several microns thick may seem to produce little impact. For water inhabitants, it emergence can mean certain death: it reduces oxygen dissolving in water drastically.

Therefore, the problem of fighting oil film is more than urgent. There is only one remedy for it: sorbent that is capable of taking in oil products. It is also desirable that the sorbent itself did not contaminate the environment and was able to turn carbohydrates into something quite harmless. Researchers of three institutes – Snezhinsk All-Russian Scientific Research Institite of Technical Physics (VNIITF), Novosibirsk State Research Center “Vector” and the Syktyvkar Institute of Biology (Komi Research Center, Ural Branch, Russian Academy of Sciences) with financial support from the International Science and Technology Center (ISTC) – managed to combine all three components of an ideal sorbent. Significant assistance was also provided by the US colleagues. Furthermore, the partner of the project – the Kirov Center for Ecological Initiatives “Press-Torf (Peat)” – even arranged production of sorbent trial lots.


The sorbent is based on peat – one of the most widespread materials in Russia, particularly in the North. Generated from remains of plants, peat doesn’t contaminate the environment by any means. Being an interim link in a series of carbohydrates transformations, which begin from dead plants and finish with anthracite, peat itself is capable of taking in oil rather well. After burning at definite temperatures (which are object of know-how), peat becomes so porous that each of its finest particles is able to absorb several times more oil film than it weighs.

However, there is a significant difficulty in working with peat: sorbent turns out to be very lightweight, it is extremely hard to disperse evenly across a large area. The task has been solved by engineers from Snezhinsk. They made special proportioning bunkers of different sizes: from the manual or, more precisely, shoulder option, reminding of a garden sprayer, through to industrial one, which is fixed on a fire-engine or a special motor-launch. The first modification fits oil-field workers, the bosses of which wish voluntarily or not (under the pressure of public opinion concerned with environment protection) to maintain cleanness in the area of oil well. The second modification is needed for purification of large water bodies’ surface. For example, the motor-launch with such a bunker on board proved itself very well during purification of the Neva river surface near the Palace Embankment. It is important to note that the sorbent is hydrophobic, i.e. it preserves floatation after it gets saturated with oil within several weeks, this fact allowing to collect it from water surface in a mechanical way using standard technology.

However, creation of the sorbent was only the first part of the effort. Biologist were involved in the second part. It is known that there are quite a lot of bacteria capable of eating up oil. Moreover, biologists are well aware of the cultures that do that best of all and are well adaptated to life in certain climatic conditions. Biologists from Syktyvkar and Novosibirsk were engaged in cultivation of such bacteria in particular, or more precisely, in selection of their correct community, including microfungi. They managed not only to select such a community, but also to develop technology for its growing and distribution in the peat sorbent. In case of using biosorbent, absorbed oil products are decomposed by oil destructor microorganisms within spring and summer period, which was confirmed by field trials carried out at the Usinsky oil field. The cost of such sorbent will certainly be much higher than that of a common one, but it guarantees complete and rapid decomposition of oil products.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>