Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Declining snowpack cools off CO2 emissions from winter soils

09.02.2006


A recent decrease in Rocky Mountain snowpack has slowed the release of heat-trapping carbon dioxide gases from forest soils into the atmosphere during the dead of winter, according to a new University of Colorado at Boulder study.


Towers studded with climate instruments at the Niwot Ridge research site west of Boulder indicate CO2 winter emissions are slowing in the high country, a serindiptous finding that does little to bolster the declining environmental health picture of the West’s forests in recent years. (CU-Boulder)



Professor Russell Monson of CU-Boulder’s ecology and evolutionary biology department said the lack of snow has decreased the winter insulation of the soils, cooling them and slowing the metabolism of microbes that release large amounts of CO2. But the discovery of what Monson called a "serendipitous effect" of reduced snowfall does little to bolster the overall environmental health picture of the West’s mountain forests in recent years, he said.

"I view this as a small amount of good news in a large cloud of bad news," said Monson, chief author of a paper appearing in the Feb. 9 issue of Nature. "While winter CO2 emissions from forest soils have slowed, the lack of winter moisture is stressing the trees during the spring and summer and inhibiting the much larger amount of CO2 they absorb during their growing season," he said.


Co-authors on the study included David Lipson of San Diego State University, Sean Burns, Mark Williams and Steven Schmidt of CU-Boulder and Andrew Turnipseed and Anthony Delany of the National Center for Atmospheric Research.

The study was undertaken at the Niwot Ridge Long Term Ecological Research site west of Boulder. The site is home to one of several dozen so-called AmeriFlux installations on the continent that measure CO2 activity. The Niwot Ridge AmeriFlux site features five towers studded with climate instruments that are funded by the U.S. Department of Energy, the National Science Foundation and the National Center for Atmospheric Research.

The researchers used the 100-foot-high towers -- which were erected at 10,000 feet in a forest of lodgepole pine, sub-alpine fir and Englemann spruce adjacent to CU-Boulder’s Mountain Research Station -- to measure CO2, water and energy exchanges between the biosphere and atmosphere, said Monson. They used the instruments to zero in on the subtle, swirling winds drifting over the rugged terrain and took millions of individual CO2 data readings from 1998 to 2004.

"The deeper the snowpack, the more CO2 we observed leaving the forest," he said. "This forced us to look at the wintertime period more closely than before."

The researchers discovered a unique collection of microbes under the snow soils with life spans of only hours to days thriving at temperatures hovering around zero, Monson said. They used DNA fingerprinting techniques to show the winter microbe community was very different genetically from the summer microbe community.

Recent studies have shown that some mountain ranges in Europe and the Western United States, including parts of the Rocky Mountains and Sierra Nevada Mountains, have experienced 50 percent to 75 percent decreases in snowpack in recent decades, he said. The declining snowpack trend has been correlated with rising temperatures.

During several recent winters, decreased snowpack has caused the trees to go for extended periods during spring without the snowmelt moisture that normally tides them over until the summer monsoon begins in late July and August, said Monson. The environmental stress from lack of moisture not only inhibits the ability of trees to take up CO2 in the summer, but also makes them more susceptible to threats like insect infestations, diseases and forest fires, he said.

Separate research undertaken by researchers from the National Oceanic and Atmospheric Administration, CU-Boulder and NCAR indicate spring is now arriving up to a month earlier on Niwot Ridge due to warmer temperatures, Monson said. This puts additional stress on the trees, with the end result being that they absorb less CO2 over the course of a year, he said.

The measurement of CO2 transport in temperate mountain forests like Niwot Ridge is critical to understanding the bigger environmental picture, said Monson. "Most carbon sequestration occurs in hilly or mountainous terrain, and forests store more carbon dioxide than other ecosystems," he said. "The only way to understand what is truly happening with carbon dioxide in the Northern Hemisphere is with monitoring systems like the one at Niwot Ridge."

Levels of CO2 in Earth’s atmosphere, blamed in part for rising temperatures in recent years, hovered around 250 parts per million for thousands of years. Since the Industrial Revolution, however, they have been steadily climbing and currently are approaching 380 parts per million. Atmospheric CO2 levels have been monitored on Niwot Ridge since 1968, providing the third longest record in the world.

Russell Monson | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>