Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Declining snowpack cools off CO2 emissions from winter soils

09.02.2006


A recent decrease in Rocky Mountain snowpack has slowed the release of heat-trapping carbon dioxide gases from forest soils into the atmosphere during the dead of winter, according to a new University of Colorado at Boulder study.


Towers studded with climate instruments at the Niwot Ridge research site west of Boulder indicate CO2 winter emissions are slowing in the high country, a serindiptous finding that does little to bolster the declining environmental health picture of the West’s forests in recent years. (CU-Boulder)



Professor Russell Monson of CU-Boulder’s ecology and evolutionary biology department said the lack of snow has decreased the winter insulation of the soils, cooling them and slowing the metabolism of microbes that release large amounts of CO2. But the discovery of what Monson called a "serendipitous effect" of reduced snowfall does little to bolster the overall environmental health picture of the West’s mountain forests in recent years, he said.

"I view this as a small amount of good news in a large cloud of bad news," said Monson, chief author of a paper appearing in the Feb. 9 issue of Nature. "While winter CO2 emissions from forest soils have slowed, the lack of winter moisture is stressing the trees during the spring and summer and inhibiting the much larger amount of CO2 they absorb during their growing season," he said.


Co-authors on the study included David Lipson of San Diego State University, Sean Burns, Mark Williams and Steven Schmidt of CU-Boulder and Andrew Turnipseed and Anthony Delany of the National Center for Atmospheric Research.

The study was undertaken at the Niwot Ridge Long Term Ecological Research site west of Boulder. The site is home to one of several dozen so-called AmeriFlux installations on the continent that measure CO2 activity. The Niwot Ridge AmeriFlux site features five towers studded with climate instruments that are funded by the U.S. Department of Energy, the National Science Foundation and the National Center for Atmospheric Research.

The researchers used the 100-foot-high towers -- which were erected at 10,000 feet in a forest of lodgepole pine, sub-alpine fir and Englemann spruce adjacent to CU-Boulder’s Mountain Research Station -- to measure CO2, water and energy exchanges between the biosphere and atmosphere, said Monson. They used the instruments to zero in on the subtle, swirling winds drifting over the rugged terrain and took millions of individual CO2 data readings from 1998 to 2004.

"The deeper the snowpack, the more CO2 we observed leaving the forest," he said. "This forced us to look at the wintertime period more closely than before."

The researchers discovered a unique collection of microbes under the snow soils with life spans of only hours to days thriving at temperatures hovering around zero, Monson said. They used DNA fingerprinting techniques to show the winter microbe community was very different genetically from the summer microbe community.

Recent studies have shown that some mountain ranges in Europe and the Western United States, including parts of the Rocky Mountains and Sierra Nevada Mountains, have experienced 50 percent to 75 percent decreases in snowpack in recent decades, he said. The declining snowpack trend has been correlated with rising temperatures.

During several recent winters, decreased snowpack has caused the trees to go for extended periods during spring without the snowmelt moisture that normally tides them over until the summer monsoon begins in late July and August, said Monson. The environmental stress from lack of moisture not only inhibits the ability of trees to take up CO2 in the summer, but also makes them more susceptible to threats like insect infestations, diseases and forest fires, he said.

Separate research undertaken by researchers from the National Oceanic and Atmospheric Administration, CU-Boulder and NCAR indicate spring is now arriving up to a month earlier on Niwot Ridge due to warmer temperatures, Monson said. This puts additional stress on the trees, with the end result being that they absorb less CO2 over the course of a year, he said.

The measurement of CO2 transport in temperate mountain forests like Niwot Ridge is critical to understanding the bigger environmental picture, said Monson. "Most carbon sequestration occurs in hilly or mountainous terrain, and forests store more carbon dioxide than other ecosystems," he said. "The only way to understand what is truly happening with carbon dioxide in the Northern Hemisphere is with monitoring systems like the one at Niwot Ridge."

Levels of CO2 in Earth’s atmosphere, blamed in part for rising temperatures in recent years, hovered around 250 parts per million for thousands of years. Since the Industrial Revolution, however, they have been steadily climbing and currently are approaching 380 parts per million. Atmospheric CO2 levels have been monitored on Niwot Ridge since 1968, providing the third longest record in the world.

Russell Monson | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>