Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Biobullets’ fight harmful mussels

01.02.2006


British researchers have developed a "biobullet" that could help control an invasive mollusk that has ravaged U.S. waterways for nearly two decades clogging water pipes, virtually wiping out some native mussels species and causing billions of dollars in industrial damage. The new microcapsules, which contain toxins that dissolve within a zebra mussel’s digestive tract, offer a safe and cost-effective way of eliminating one of the world’s "most important economic pests" without harming other aquatic life, according to scientists at the University of Cambridge.



The report, in the Feb. 1 issue of the American Chemical Society’s Environmental Science & Technology journal, outlines how zoologist David Aldridge and colleagues developed microcapsules about the size of the algae particles that zebra mussels feed on. Once ingested, the "biobullets" slowly release small amounts of potassium chloride, a salt that is poisonous to most freshwater mollusks. Unlike other methods used to eradicate zebra mussels, such as chlorine, "biobullets" pose little or no threat to other marine animals, the researchers say, because they rapidly degrade and disperse in water.

Since their accidental introduction from Eastern Europe into the Great Lakes in the late 1980s, zebra mussels have become notorious aquatic pests, fouling water intake pipes at hydroelectric stations, nuclear power plants and industrial facilities. In addition, zebra mussels can anchor themselves to other mollusks, making it impossible for native species to thrive. In some case, as many as 10,000 zebra mussels have attached themselves to a single native mussel, according to the U.S. Geological Survey (USGS). In all, the researchers note, coping with these pests costs upward of $5 billion annually.


Without many natural predators, zebra mussels have rapidly spread and are now found in 21 states including Oklahoma, Louisiana and Vermont, according to the USGS. Unchecked, many scientists suspect zebra mussels will soon spread throughout North American waterways.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>