Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

York researchers develop pollution-busting plants to clean up contaminated land

24.01.2006


Scientists at the University of York have played a crucial role in developing a way of using plants to clean up land contaminated by explosives.



The research, by a team led by Professor Neil Bruce in CNAP (Centre for Novel Agricultural Products) in the University’s Department of Biology, uses micro-organisms found in soil to turn trees and plants into highly-effective pollution-busters. The research findings are published in Nature Biotechnology.

Decades of military activity have resulted in pollution of land and groundwater by explosives resistant to biological degradation. Large tracts of land used for military training, particularly in the USA, are contaminated by RDX, one of the most widely-used explosives, which is both highly toxic and carcinogenic.


The six-strong CNAP team has isolated a bacterial micro-organism in the soil in contaminated land that can utilise the explosives as a source of nitrogen for growth. But, because RDX is so mobile in soil, the bacteria present are not degrading it quickly enough to stop the contamination of land and ground water. So the York team has redeployed the enzyme in the bacteria into plants, giving them the ability to biodegrade the pollutant more efficiently.

Professor Bruce said: “We have taken that activity from the bacteria and put it in plants with large amounts of biomass. A tree, for instance, is effectively a big pump, seeking out water, and if we can redeploy the enzyme which degrades the explosive making it harmless, it combines the capabilities of soil bacteria with the high biomass and uptake properties in plants

“We are using an enzyme already existing in the soil but putting it into a more efficient machine to biodegrade the RDX. It is a sustainable, low maintenance and low cost process which has the potential to clean up large areas of land in military training ranges or industrial sites.”

So far, the research has involved redeploying the enzyme into a model plant system – Arabidopsis thaliana – but in collaboration with researchers at the University of Washington, the CNAP team are now extending the technique to robust plants species such as trees, including aspen and poplar, and perennial grasses.

The technique can also be used to modify plants to resist other organic pollutants.

Professor Neil Bruce | alfa
Further information:
http://www.york.ac.uk/admin/presspr/pressreleases/pollutionplants.htm

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>