Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased competition for pollen may lead to plant extinctions

23.01.2006


Loss of birds, bees and other pollinators places plants at risk



The decline of birds, bees and other pollinators in the world’s most diverse ecosystems may be putting plants in those areas at risk, according to new research. The finding raises concern that more may have to be done to protect Earth’s most biologically rich areas, scientists say in an article appearing in the Jan. 17 issue of the Proceedings of the National Academy of Sciences (PNAS).

The analysis shows that ecosystems with the largest number of different species, including the jungles of South America and Southeast Asia and the rich shrubland of South Africa, have bigger deficits in pollination compared to the less-diverse ecosystems of North America, Europe and Australia.


"The global pattern we observed suggests that plants in species-rich regions exhibit a greater reduction in fruit production due to insufficient pollination than plant species in regions of lower biodiversity," said Susan Mazer, a co-author of the article and a biologist at the University of California, Santa Barbara. She and her colleagues believe such biodiversity "hotspots" are characterized by stronger competition among plant species for pollinators, such that many plant species simply don’t receive enough pollen to achieve maximum fruit and seed production.

"Many plants rely on insects and other pollen vectors to reproduce," said Jana Vamosi, an evolutionary biologist at the University of Calgary and co-author of the paper. "We’ve found that in areas where there is a lot of competition between individuals and between species, many plants aren’t getting enough pollen to successfully reproduce. If plants can’t survive, neither can animals. These biodiversity hotspots are important because they are where we most often find new sources of drugs and other important substances. They are also the areas where habitat is being destroyed the fastest."

The study analyzes 482 field experiments on 241 flowering plant species conducted since 1981. The research took several years to complete; all continents except Antarctica are represented.

The analysis, which was sponsored by the researchers affiliated with the National Center for Ecological Analysis and Synthesis (NCEAS) at the UC-Santa Barbara, and was funded by the National Science Foundation (NSF), "can tell us things about ecological processes hat individual studies can’t," Mazer said, noting that the synthesis could not have been done 25 years ago because few careful field studies of this type had been conducted. "Our detection of global patterns required the simultaneous analysis of many studies conducted independently by plant ecologists all over the world," she said.

Mazer cautioned that it is not yet possible to determine whether low pollenation observed in species-rich areas is a new phenomenon or a long-standing one. It may be a recent problem due to habitat fragmentation or destruction, she said, or it may be long term. Plant species in ecologically complex areas may be continually faced with new competitors, and therefore cannot evolve as rapidly as their environment changes. If that is true, she said, pollen limitation may be a chronic problem for species in biodiversity hotspots--a challenge they have coped with for millions of years.

"The pattern raises the alarm, however, that these species face two challenges that increase the risk of extinction: habitat destruction, which is occurring at alarming rates in the tropics, and reduced pollinator activity," said Mazer.

In addition to Vamosi and Mazer, authors include Tiffany Knight at Washington University; Tia-Lynn Ashman and Janette Steets at the University of Pittsburgh; and Martin Burd at Monash University in Melbourne, Australia.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov
http://www.ia.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>