Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome sequencing is for ecologists, too

19.01.2006


An organism widely used for genetics-versus-environment studies has joined the panoply of mice, rats, dogs, humans and other species whose entire genomes have been sequenced.


The water flea Daphnia pulex is a commonly used model organism among ecologists and other environmental scientists. Photo by: P.D.N. Hebert, University of Guelph



At the Daphnia Genomics Consortium’s annual meeting in Bloomington this week, Indiana University and Joint Genome Institute scientists announced they’ve completed a "shotgun" sequence for Daphnia pulex, or the water flea, as it’s better known to high school biology students.

"Daphnia is important to the environmental sciences, where the goal is to understand the complexities of ecosystems by getting a handle on how species in natural settings respond genetically to their environments," said Daphnia Genomics Project leader John Colbourne. "Ecologists and evolutionary biologists would also want to learn more about how genetic variation is important for adaptation and how populations survive in a changing world."


Colbourne is a founding member of the Daphnia Genomics Consortium and the genomics director of the Center for Genomics and Bioinformatics at IU Bloomington.

The U.S. Department of Energy and the National Science Foundation funded the Daphnia project. Most of the sequencing work was done at DOE’s Joint Genome Institute Production Genomics Facility in Walnut Creek, Calif.

Shotgun sequencing involves breaking a whole genome into smaller, more digestible DNA segments, then sequencing each one. The Daphnia genome was sequenced over eight times to ensure better coverage of all 12 pairs of chromosomes.

Daphnia’s short generation time and small genome (a mere 200 million base pairs) makes it an ideal organism for laboratory and field studies of how environments influence -- and how they’re influenced by -- an organism’s genetics. The animals are common in lakes and ponds and have been used to monitor the health of aquatic environments. Members of the species can reproduce both with and without sex, which has important implications in evolutionary biology and ecology.

Species whose genomes have been sequenced are generally used for experiments in physiology and in developmental and cell biology, but rarely in ecology. Scientists are eager to exploit genomic technologies and genomic experimental approaches that have already revolutionized research in the human health sciences, with the goal of diagnosing the state of aquatic environments.

Despite their common name, water fleas are not insects but crustaceans, like lobsters and crabs. Daphnia is the first crustacean genome to be sequenced. Information from its genome will help biologists make sense of similarities and differences among the intensively studied genetic models of insects, which are evolutionary relatives of crustaceans.

"The genome sequences are being completed for several insects because they are important model organisms -- like fruit flies -- or because they are important in disease or agriculture," said Jeffrey Boore, head of the evolutionary genomics program at the Joint Genome Institute. "And the Daphnia genome sequence will illuminate all of this by allowing us to infer the ground state from which the insect genomes evolved."

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu
http://www.lbl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>