Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking a taxi could increase your exposure to pollution

11.01.2006


Researchers have discovered that your level of exposure to pollution can vary according to what method of transport you use, with travelling by taxis resulting in the highest levels of exposure and walking the least.



Research published in the journal Atmospheric Environment, describes how the team from Imperial College London and the Health and Safety Laboratory, Buxton, measured and visualised exposure to pollution levels, while using a variety of different transport methods for travelling across London.

The researchers looked at five modes of transport, including walking, cycling, car, taxi and bus, and measured levels of exposure to ultrafine particles when travelling on them using a newly developed system that uses in combination an ultrafine particle counter and video recorder.


Ultrafine particles are less than 100 nanometres in diameter and mainly traffic related. Their small size and large surface area means it is possible to inhale large quantities which makes them particularly dangerous.

The visualisation system allows video images of individuals’ activities to be played back alongside the ultrafine particle concentrations they are exposed to. As a result, most activities and behaviours that cause high exposures can be visibly identified, such as being trapped on traffic islands and waiting in congested traffic.

On average, while travelling in a taxi, passengers were exposed to over 100,000 ultrafine particles counts per cubic centimetre (pt/cm3), travelling in a bus resulted in exposure to just under 100,000 pt/cm3, travelling in car caused exposure to 40,000 pt/cm3, cycling was around 80,000 pt/cm3, and walking was just under 50,000 pt/cm3.

Surbjit Kaur, from Imperial College London, and first author of the paper, said: “It was a real surprise to find the extent to which walking resulted in the lowest exposure. The higher exposure from travelling in taxis may come from actually sitting in the vehicle while being stuck in traffic where you are directly in the path of the pollutant source. Also the fact that taxis are probably on the road for much longer than your average car could cause an accumulation of ultrafine particles.”

Dr Mark Nieuwenhuijsen, from Imperial College London, added: “The particular strength of the system is the visual aspect. The new monitoring and visualisation system is an effective environmental risk communication tool that can be used to identify, visualise and avoid hotspots of pollution. ”

The study was carried out as part of the DAPPLE (Dispersion of Air Pollution & Penetration into the Local Environment) project, which looks to provide a better understanding of the physical processes affecting street and neighbourhood scale flows of air, traffic and people, and their corresponding interactions with the dispersion of pollutants. The project consortium includes the University of Bristol, the University of Cambridge, Imperial College London, University of Leeds, University of Reading and the University of Surrey.

DAPPLE is funded by the Engineering and Physical Science Research Council. Further information about the project and exposure visualisation samples can be seen at www.dapple.org.uk.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk
http://www.dapple.org.uk

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>