Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking a taxi could increase your exposure to pollution

11.01.2006


Researchers have discovered that your level of exposure to pollution can vary according to what method of transport you use, with travelling by taxis resulting in the highest levels of exposure and walking the least.



Research published in the journal Atmospheric Environment, describes how the team from Imperial College London and the Health and Safety Laboratory, Buxton, measured and visualised exposure to pollution levels, while using a variety of different transport methods for travelling across London.

The researchers looked at five modes of transport, including walking, cycling, car, taxi and bus, and measured levels of exposure to ultrafine particles when travelling on them using a newly developed system that uses in combination an ultrafine particle counter and video recorder.


Ultrafine particles are less than 100 nanometres in diameter and mainly traffic related. Their small size and large surface area means it is possible to inhale large quantities which makes them particularly dangerous.

The visualisation system allows video images of individuals’ activities to be played back alongside the ultrafine particle concentrations they are exposed to. As a result, most activities and behaviours that cause high exposures can be visibly identified, such as being trapped on traffic islands and waiting in congested traffic.

On average, while travelling in a taxi, passengers were exposed to over 100,000 ultrafine particles counts per cubic centimetre (pt/cm3), travelling in a bus resulted in exposure to just under 100,000 pt/cm3, travelling in car caused exposure to 40,000 pt/cm3, cycling was around 80,000 pt/cm3, and walking was just under 50,000 pt/cm3.

Surbjit Kaur, from Imperial College London, and first author of the paper, said: “It was a real surprise to find the extent to which walking resulted in the lowest exposure. The higher exposure from travelling in taxis may come from actually sitting in the vehicle while being stuck in traffic where you are directly in the path of the pollutant source. Also the fact that taxis are probably on the road for much longer than your average car could cause an accumulation of ultrafine particles.”

Dr Mark Nieuwenhuijsen, from Imperial College London, added: “The particular strength of the system is the visual aspect. The new monitoring and visualisation system is an effective environmental risk communication tool that can be used to identify, visualise and avoid hotspots of pollution. ”

The study was carried out as part of the DAPPLE (Dispersion of Air Pollution & Penetration into the Local Environment) project, which looks to provide a better understanding of the physical processes affecting street and neighbourhood scale flows of air, traffic and people, and their corresponding interactions with the dispersion of pollutants. The project consortium includes the University of Bristol, the University of Cambridge, Imperial College London, University of Leeds, University of Reading and the University of Surrey.

DAPPLE is funded by the Engineering and Physical Science Research Council. Further information about the project and exposure visualisation samples can be seen at www.dapple.org.uk.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk
http://www.dapple.org.uk

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>