Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research to Help Guarantee Future of Oil Supplies

06.01.2006


Scientists at the University of Liverpool are working with leading oil companies to further understanding of the nature of oil and gas reservoirs within deeply buried submarine channels.



Professor Stephen Flint and Dr David Hodgson, from the Department of Earth and Ocean Sciences, have been awarded £1 million by a global consortium of 11 of the world’s leading oil companies to study how sand is transported through and deposited in deep-sea submarine channels. Scientists will study ancient channel systems in the Karoo area of South Africa, which are now exposed above sea level.

Submarine channels transport sediments such as sand, mud and silt from shallow marine waters to the deep sea and contain much of the recently discovered oil and gas reserves outside the Middle East. The cost of drilling a well to extract new reserves in slope channel reservoirs can cost over $50 million (£29 million) and so it is crucial that exactly the right position is targeted. Only sand filled channels can produce oil and so scientists at the University will work on predicting which channels contain sand and which are filled with mud and silt, based on analysis on the characteristics and setting of the Karoo systems.


Professor Flint said: “We will be using the latest laser imaging, satellite mapping, helicopter-based high resolution photography and 3-D computer modelling in our field work to capture the data required to understand and predict sand transfer and storage mechanisms.”

The computer models will be used by oil companies to guide development of new oilfields throughout the world, in order to dramatically increase the efficiency of oil recovery and help guarantee future energy supplies. The team will also use the data to improve understanding of the mechanisms of sand transfer from shallow shelf to deep ocean floor, in order to predict how submarine landslides and related natural hazards, such as tsunamis, occur.

Professor Flint added: “It is important that new and efficient ways of increasing recovery of oil reserves are found. Many factors can disrupt the supply of oil, such as increased costs, disputes, and natural disasters. Our research will help in providing accurate identification of areas of interest to oil companies, but it will also help us explain and better predict how sediment is distributed to the deep oceans.”

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>