Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research tracks whales by listening to sounds

03.01.2006


Researchers have developed a new tool to help them study endangered whales – autonomous hydrophones that can be deployed in the ocean to record the unique clicks, pulses and calls of different whale species.



Those efforts are leading to some surprising findings, including the discovery by a team of researchers of rare right whales swimming in the Gulf of Alaska.

"There has been only one confirmed sighting of a right whale in the Gulf of Alaska since 1980, so discovering them is not only surprising, it is fairly significant," said David K. Mellinger, an assistant professor at Oregon State University’s Hatfield Marine Science Center in Newport. "We picked up the sounds of one whale off Kodiak Island, and several others in deep water, which is also something of a surprise, since most right whale sightings have been near-shore."


Results of these and five years of studies have been published in the January 2006 issue of the journal BioScience. Mellinger said scientists have been able to use the hydrophones to distinguish sounds made by different whale species. And some species, he added, have different "dialects" depending on where they are from. Blue whales off the Pacific Northwest sound different than populations of blue whales that live in the western Pacific Ocean, and those sound different from populations of blue whales off Antarctica.

And they all sound different than the blue whales off Chile.

"The whales in the eastern Pacific have a very low-pitched pulsed sound, followed by a tone," Mellinger said. "Other populations use different combinations of pulses, tones and pitches. The difference is really striking, but we don’t know if it is tied to genetics, or some other reason.

"There are also some hybrid sounds that are rare," he added. "We don’t know if they are part of a common ’language’ that different populations of whales use to communicate with each other, or if they come from a confused juvenile who hasn’t completely learned the complexities of communicating."

Scientists began hearing whale sounds several years ago on a U.S. Navy hydrophone network. The hydrophone system – called the Sound Surveillance System, or SOSUS – was used by the Navy during the Cold War to monitor submarine activity in the northern Pacific Ocean. As the Cold War ebbed, these and other military assets were offered to civilian researchers performing environmental studies.

Another Oregon State researcher, Christopher Fox, first received permission from the Navy to use the hydrophones at his laboratory at OSU’s Hatfield Marine Science Center to listen for undersea earthquakes – a program now directed by Robert Dziak.

While listening for earthquakes, the OSU researchers begin picking up sounds of ships, marine landslides – and whales. An engineer at the center, Haru Matsumoto, then developed an autonomous hydrophone that can be deployed independently and Mellinger’s colleagues placed seven of these instruments in the Gulf of Alaska about five years ago. The hydrophones can pick up right whale sounds from about 40 kilometers away – and even farther, if the waters are shallow and the terrain even.

Using those hydrophones, Mellinger discovered a number of sperm whales living in the Gulf of Alaska in the winter. The hydrophones picked up almost half as many whale sounds as in the summer – indicating a surprisingly robust "off-season" population.

"There are a handful of records of people spotting sperm whales in the region – and they’re all in the summer," Mellinger said. "Likewise, all of the historic whaling records are from the summer. The Gulf of Alaska is not a place you want to be in the winter. But apparently, sperm whales don’t mind."

Other researchers participating in the study include Sue Moore, NOAA’s Alaska Fisheries Center in Seattle; Kathleen M. Stafford, an OSU graduate now at the University of Washington; and John A. Hildebrand, Scripps Institution of Oceanography.

This spring, the researchers plan to deploy three more hydrophones in the Bering Sea next to a series of long-duration NOAA moorings. They will analyze possible connections between the appearance of the whales and ocean conditions. "We’ll look at water temperature, salinity and even chlorophyll growth," Mellinger said. "Ultimately, what we hope is to be able to identify a certain water mass and know that it will lead to chlorophyll growth and an abundance of plankton, and that the whales will soon appear."

David Mellinger | EurekAlert!
Further information:
http://oregonstate.edu/
http://www.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>