Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mission to Mars via Antarctica

22.12.2005


A few weeks before leaving for the Antarctic Concordia Station, the Italian-French crew that will spend over one year in one of the harshest, isolated environments on Earth, attended two days of preparatory training at ESA’s Headquarters in Paris, France. During their stay at the research station the crew will participate in a number of ESA experiments – the outcome of which will help prepare for long-term missions to Mars.



As part of the Aurora Exploration Programme, ESA is considering participating in a human mission to Mars by the year 2030. Research projects are planned or are already underway to develop the technology and knowledge needed. By being involved in programmes that have requirements similar to those of a mission to Mars, ESA will gain experience on how best to prepare for such a challenging mission.

"The Concordia Station is an ideal location as it replicates certain aspects of a Mars mission," explains Oliver Angerer, ESA’s coordinator for the Concordia research programme. "The crew lives in an extreme environment in one of the most remote places on Earth. During the winter the base is completely cut off with no visitors and no chance for rescue. In such an isolated location, the crew has to learn to be fully self-sufficient."


Cooperation

Built and operated jointly by the French Polar Institute (Institute Paul Emile Victor, IPEV) and the Italian Antarctic Programme (Consorzio per l’attuazione del Programma Nazionale di Richerche in Antartide, PNRA S.C.r.l.), the Concordia Station was completed in 2004. A letter of intent was signed with IPEV and PNRA in 2002 that enabled ESA to cooperate on some aspects of the project.

Capable of providing home to up to 16 crewmembers in the winter, the station consists of three buildings, which are interlinked by enclosed walkways. Two large cylindrical three-storey buildings provide the station’s main living and working quarters, whilst the third building houses technical equipment, like the electrical power plant and boiler room.

Last November, the first crew finished their winter-over which was dedicated to the technical qualification of the station . The summer season sees a swelling in the number of inhabitants as short-stay scientists take advantage of the less extreme weather (however, mean air temperature is about -30°C during this time!). With the second crew now starting to gather at the remote research station, the summer season also marks a change over of the crew.

Briefings

Three scientists who are part of the next Concordia winter-over crew have already made the long journey to Antarctica. The rest of the crew, who will leave for the Antarctic research station during December, gathered at ESA’s Headquarters in Paris for two days of pre-departure training. They received briefings about life at Concordia, including aspects such as safety and the implications of the Antarctic Treaty for activities at the station.

The seven crewmembers also heard about research at the station, including two special experiments for which they will act as subjects during their stay. In 2003, ESA coordinated together with the Concordia partners a Research Announcement for medical and psychological research, from which six proposals were selected.

The two experiments, which are the first to be implemented in the coming season, look at psychological adaptation to the environment and the process of developing group identity; issues that will also be important factors for humans travelling to Mars. For this research the crew will complete questionnaires at regular intervals throughout their stay.

ESA’s Mistacoba experiment, which already started a year ago when the first crew started living at the station, will also continue after the crew rotation. Starting from a newly built clean environment, samples are taken from fixed locations in the base as well as from crewmembers themselves. The Mistacoba experiment will provide a profile of how microbes spread and evolve in the station - an isolated and confined environment - over time.

Water-recycling

To protect the Antarctic environment, all waste materials must be removed from the Continent. For the Concordia Station, this means that all waste materials have to be appropriately treated. Regarding water, based on ESA life support technologies, ESA developed, together with PNRA and IPEV, a system to recycle the so-called ’grey water’ collected from showers, laundry and dishwashing, which has been operating for a year in line with the requirements of the Concordia partners.

Other ESA activities for Concordia include the ongoing development of a system to monitor the health and well being of the crew, part of the Long Term Medical Survey (LMTS). Physiological parameters, collected using a vest-like item of clothing, will provide valuable data about the health and fitness of crew during long-term stays in harsh environments.

Real environment

In mid-February the last plane of summer visitors will depart from Concordia leaving the crew to their own devices. "For those nine winter months the crew will experience extreme isolation," adds Oliver Angerer. "Concordia is a real operational environment, something we would never be able to simulate in a laboratory. This will enhance and complement our research and give us valuable insight we need to prepare for Mars."

Dieter Isakeit | alfa
Further information:
http://www.esa.int/esaHS/SEMBZA8A9HE_research_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>