Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Analysis of Asian Elephants in India Reveals Some Surprises

21.12.2005


After analyzing DNA in elephant dung, the authors of a new study in Animal Conservation found that the country’s northeast elephant population is actually made up of two genetically distinct groups separated by the Brahmaputra River. An earlier study by the same authors showed that the southern populations are also genetically distinct, separated by the Palghat Gap.


Researchers find one population actually two; suggest strategies for future elephant conservation

Researchers in India and from The Earth Institute at Columbia University have discovered that one of the few remaining populations of Asian elephants in India is actually two genetically distinct groups. The results of the study, which appear in the current issue of the journal Animal Conservation, could have far-reaching implications in conservation plans for the endangered elephants as well as other species on the Subcontinent.

Prithiviraj Fernando, a post-doctoral researcher at the Center for Environmental Research and Conservation (CERC), and Don Melnick, executive director of CERC, together with colleagues from the Centre for Ecological Science at the Indian Institute of Science collected dung samples from nearly 300 wild Asian elephants and 30 captive elephants for which reliable capture information existed. They then examined DNA from the samples and found that, of the distinct populations found in India, the groups that inhabit the forests in the northeast of the country is actually composed of two genetically distinct populations separated by the Brahmaputra River.



Despite the low and declining numbers of Asian elephants, relatively little is known about their genetic diversity—information that is crucial to plans for preserving the species. An earlier study of elephants in southern India by the same group identified two distinct populations where there was previously thought to be only one. A region known as the Palghat Gap, a wide pass through the Western Ghat mountain range, was found to act a biogeographical barrier between the two in that case.

"It is interesting that the Brahmaputra seems to have been a biogeographical barrier for several species," the authors write in their most recent study. "Population genetic studies of other species would be helpful in corroborating whether the Palghat Gap and the Brahmaputra River have served as important biogeographical barriers to a broad range of taxa and thus should be considered in future conservation planning."

The Asian elephant (Elephas maximus) is recognized by the World Conservation Union (IUCN) as an endangered species, with an estimated 22,700 to 32,400 individuals remaining, more than half of which are in India. Elephant numbers throughout Asia have declined drastically over the last several hundred years, mainly due to habitat loss and fragmentation, capture and domestication, and, more recently, poaching of males for ivory.

To combat these declines, India established 11 so-called "elephant ranges" that incorporate more than half of the known elephant habitat. Fewer than half of these ranges, however, offer the much stricter protections provided by wildlife sanctuaries or national parks. Moreover, India is projected to overtake China as the world’s most populous country by 2030, a fact that almost certain to bring about increased competition for space between humans and elephants.

Still, Melnick and his colleagues are confident that their work represents a crucial step in efforts to protect an animal that is deeply rooted in Indian culture. "If we are going to find a way to protect elephants for future generations, we need to preserve the greatest genetic diversity possible." says Melnick. "We’re just acting blind if we don’t know where that diversity is. This study shows us where we need to focus our efforts."

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment and society. The Earth Institute builds upon excellence in the core disciplines — earth sciences, biological sciences, engineering sciences, social sciences and health sciences — and stresses cross-disciplinary approaches to complex problems. Through research, training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor. For more information, visit www.earth.columbia.edu.

The Center for Environmental Research and Conservation (CERC), the principal ecology and biodiversity unit of The Earth Institute at Columbia University, is an unrivaled consortium of five world-class scientific institutions - Columbia University, the American Museum of Natural History, The New York Botanical Garden, Wildlife Conservation Society and Wildlife Trust. The Center seeks to build environmental leadership and find long-term solutions to combat biological diversity loss and natural resource depletion, while meeting the needs of a growing human population.

Ken Kostel | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>