Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GROWing the next generation of water recycling plants

09.12.2005


The Green Roof Water Recycling System, GROW, will bring a splash of colour to the rooftops of office blocks and flats in cities across the UK. It will also help recycle water. The green membrane protects the system from rain, which itself could be collected and reused.


A vegetated rooftop recycling system has been developed that allows water to be used twice before it is flushed into the communal waste water system.

The Green Roof Water Recycling System (GROW) uses semi-aquatic plants to treat waste washing water, which can then be reused for activities such as flushing the toilet.

GROW is the brainchild of Chris Shirley-Smith, whose company Water Works UK is collaborating with Imperial College London and Cranfield University. The researchers are funded by the Engineering and Physical Sciences Research Council.



So-called grey water from washbasins, baths and showers is pumped up to the GROW system, which is constructed on the roof of an office or housing block. It consists of an inclined framework of interconnected horizontal troughs. Planted in these troughs are rows of specially chosen plants that gently cleanse the grey water. Trickling through the GROW framework, the plants’ roots naturally take up the dissolved pollutants, leaving ‘green water’. Green water is not drinkable and will be dyed with a vegetable colour to signify this, but it can be used to flush toilets or water the garden.

More than half the water used in the home and workplace does not need to be of drinkable quality yet it comes from the same pure source as our kitchen taps. Using GROW, much of the water that enters a building can be used twice before being placed into the national wastewater management system.

“We had to carefully choose which semi-aquatic plants to use. One of the most successful is water mint, whose roots have disinfectant qualities,” says Professor David Butler, who oversees the project at Imperial College. The other plant species include the yellow flag iris, marsh marigold, and the common reed. They are chosen to be resistant to the pollutants they absorb. By planting more than one species, the engineers guard against an unusually dirty batch of water exceeding a particular species’ tolerance level. Should one species die off, there will still be others there to continue the job until the dead plants can be replaced.

The beauty of the system is that it is not ‘high-tech’ in the traditional sense. “It does not require sophisticated maintenance, just tending, like any garden,” says Butler.

The next aim for GROW is to see if it can be reduced in size to sit above a household water butt, making it serviceable for individual households. The team will also investigate whether the addition of an ultraviolet light can enhance the disinfection of the water. They hope to market GROW commercially in the second half of 2006.

GROW is one project in a much larger EPSRC-funded Sustainable Water Management programme (WaND) that Professor Butler oversees at Imperial. “Our overall aim is to contribute towards sustainable water management in new developments. We hope that GROW will be one of the tools that can help us achieve that goal,” says Butler.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>