Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GROWing the next generation of water recycling plants

09.12.2005


The Green Roof Water Recycling System, GROW, will bring a splash of colour to the rooftops of office blocks and flats in cities across the UK. It will also help recycle water. The green membrane protects the system from rain, which itself could be collected and reused.


A vegetated rooftop recycling system has been developed that allows water to be used twice before it is flushed into the communal waste water system.

The Green Roof Water Recycling System (GROW) uses semi-aquatic plants to treat waste washing water, which can then be reused for activities such as flushing the toilet.

GROW is the brainchild of Chris Shirley-Smith, whose company Water Works UK is collaborating with Imperial College London and Cranfield University. The researchers are funded by the Engineering and Physical Sciences Research Council.



So-called grey water from washbasins, baths and showers is pumped up to the GROW system, which is constructed on the roof of an office or housing block. It consists of an inclined framework of interconnected horizontal troughs. Planted in these troughs are rows of specially chosen plants that gently cleanse the grey water. Trickling through the GROW framework, the plants’ roots naturally take up the dissolved pollutants, leaving ‘green water’. Green water is not drinkable and will be dyed with a vegetable colour to signify this, but it can be used to flush toilets or water the garden.

More than half the water used in the home and workplace does not need to be of drinkable quality yet it comes from the same pure source as our kitchen taps. Using GROW, much of the water that enters a building can be used twice before being placed into the national wastewater management system.

“We had to carefully choose which semi-aquatic plants to use. One of the most successful is water mint, whose roots have disinfectant qualities,” says Professor David Butler, who oversees the project at Imperial College. The other plant species include the yellow flag iris, marsh marigold, and the common reed. They are chosen to be resistant to the pollutants they absorb. By planting more than one species, the engineers guard against an unusually dirty batch of water exceeding a particular species’ tolerance level. Should one species die off, there will still be others there to continue the job until the dead plants can be replaced.

The beauty of the system is that it is not ‘high-tech’ in the traditional sense. “It does not require sophisticated maintenance, just tending, like any garden,” says Butler.

The next aim for GROW is to see if it can be reduced in size to sit above a household water butt, making it serviceable for individual households. The team will also investigate whether the addition of an ultraviolet light can enhance the disinfection of the water. They hope to market GROW commercially in the second half of 2006.

GROW is one project in a much larger EPSRC-funded Sustainable Water Management programme (WaND) that Professor Butler oversees at Imperial. “Our overall aim is to contribute towards sustainable water management in new developments. We hope that GROW will be one of the tools that can help us achieve that goal,” says Butler.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>