Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GROWing the next generation of water recycling plants

09.12.2005


The Green Roof Water Recycling System, GROW, will bring a splash of colour to the rooftops of office blocks and flats in cities across the UK. It will also help recycle water. The green membrane protects the system from rain, which itself could be collected and reused.


A vegetated rooftop recycling system has been developed that allows water to be used twice before it is flushed into the communal waste water system.

The Green Roof Water Recycling System (GROW) uses semi-aquatic plants to treat waste washing water, which can then be reused for activities such as flushing the toilet.

GROW is the brainchild of Chris Shirley-Smith, whose company Water Works UK is collaborating with Imperial College London and Cranfield University. The researchers are funded by the Engineering and Physical Sciences Research Council.



So-called grey water from washbasins, baths and showers is pumped up to the GROW system, which is constructed on the roof of an office or housing block. It consists of an inclined framework of interconnected horizontal troughs. Planted in these troughs are rows of specially chosen plants that gently cleanse the grey water. Trickling through the GROW framework, the plants’ roots naturally take up the dissolved pollutants, leaving ‘green water’. Green water is not drinkable and will be dyed with a vegetable colour to signify this, but it can be used to flush toilets or water the garden.

More than half the water used in the home and workplace does not need to be of drinkable quality yet it comes from the same pure source as our kitchen taps. Using GROW, much of the water that enters a building can be used twice before being placed into the national wastewater management system.

“We had to carefully choose which semi-aquatic plants to use. One of the most successful is water mint, whose roots have disinfectant qualities,” says Professor David Butler, who oversees the project at Imperial College. The other plant species include the yellow flag iris, marsh marigold, and the common reed. They are chosen to be resistant to the pollutants they absorb. By planting more than one species, the engineers guard against an unusually dirty batch of water exceeding a particular species’ tolerance level. Should one species die off, there will still be others there to continue the job until the dead plants can be replaced.

The beauty of the system is that it is not ‘high-tech’ in the traditional sense. “It does not require sophisticated maintenance, just tending, like any garden,” says Butler.

The next aim for GROW is to see if it can be reduced in size to sit above a household water butt, making it serviceable for individual households. The team will also investigate whether the addition of an ultraviolet light can enhance the disinfection of the water. They hope to market GROW commercially in the second half of 2006.

GROW is one project in a much larger EPSRC-funded Sustainable Water Management programme (WaND) that Professor Butler oversees at Imperial. “Our overall aim is to contribute towards sustainable water management in new developments. We hope that GROW will be one of the tools that can help us achieve that goal,” says Butler.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>