Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GROWing the next generation of water recycling plants

09.12.2005


The Green Roof Water Recycling System, GROW, will bring a splash of colour to the rooftops of office blocks and flats in cities across the UK. It will also help recycle water. The green membrane protects the system from rain, which itself could be collected and reused.


A vegetated rooftop recycling system has been developed that allows water to be used twice before it is flushed into the communal waste water system.

The Green Roof Water Recycling System (GROW) uses semi-aquatic plants to treat waste washing water, which can then be reused for activities such as flushing the toilet.

GROW is the brainchild of Chris Shirley-Smith, whose company Water Works UK is collaborating with Imperial College London and Cranfield University. The researchers are funded by the Engineering and Physical Sciences Research Council.



So-called grey water from washbasins, baths and showers is pumped up to the GROW system, which is constructed on the roof of an office or housing block. It consists of an inclined framework of interconnected horizontal troughs. Planted in these troughs are rows of specially chosen plants that gently cleanse the grey water. Trickling through the GROW framework, the plants’ roots naturally take up the dissolved pollutants, leaving ‘green water’. Green water is not drinkable and will be dyed with a vegetable colour to signify this, but it can be used to flush toilets or water the garden.

More than half the water used in the home and workplace does not need to be of drinkable quality yet it comes from the same pure source as our kitchen taps. Using GROW, much of the water that enters a building can be used twice before being placed into the national wastewater management system.

“We had to carefully choose which semi-aquatic plants to use. One of the most successful is water mint, whose roots have disinfectant qualities,” says Professor David Butler, who oversees the project at Imperial College. The other plant species include the yellow flag iris, marsh marigold, and the common reed. They are chosen to be resistant to the pollutants they absorb. By planting more than one species, the engineers guard against an unusually dirty batch of water exceeding a particular species’ tolerance level. Should one species die off, there will still be others there to continue the job until the dead plants can be replaced.

The beauty of the system is that it is not ‘high-tech’ in the traditional sense. “It does not require sophisticated maintenance, just tending, like any garden,” says Butler.

The next aim for GROW is to see if it can be reduced in size to sit above a household water butt, making it serviceable for individual households. The team will also investigate whether the addition of an ultraviolet light can enhance the disinfection of the water. They hope to market GROW commercially in the second half of 2006.

GROW is one project in a much larger EPSRC-funded Sustainable Water Management programme (WaND) that Professor Butler oversees at Imperial. “Our overall aim is to contribute towards sustainable water management in new developments. We hope that GROW will be one of the tools that can help us achieve that goal,” says Butler.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>