Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Species take care of each other in ecological communities

01.12.2005


Unspoken rules of existence in tropical rain forests mean no one species will take up too much space and squeeze others out, says new research conducted in part at the University of Alberta that shows how ecological communities regulate themselves.



Dr. Fangliang He is part of a research team that studied fundamental questions plaguing scientists since Darwin’s time: why are some species so common while others are rare? How do common and rare species interact? And how do hundreds, even thousands, of tree species coexist in a limited space in the tropics?

He, along with Igor Volkov and Jayanth Banavar, from Pennsylvania State University, Stephen Hubbell from the University of Georgia and Amos Maritan from the Universita di Padova in Italy, offer a new theory to explain why tropical rain forests are so species rich and how species are assembled in a community. Their work is published in the current edition of "Nature".


Species must meet certain conditions to live in a community. Understanding the rules that make up community assemblages is one of the most challenging scientific questions facing scientists today. Niche theory, which assumes species differ from one another in various aspects, has been traditionally used to explain community assemblages. However, this theory offers little to predict community assemblage patterns – the way species share a limited space.

He’s work attempts to address community assembly rules based on Hubbell’s recently developed neutral theory. "The basic idea of the neutral theory is that community membership is determined by five fundamental processes: birth, death, immigration, speciation and random drift. Furthermore, the theory assumes that every individual in the community, regardless of species identity, has the same rates of birth, death, immigration and mutating into a new species," said He, who is a Canada Research Chair from the Department of Renewable Resources.

The research team modified this theory by arguing that the birth rate and mortality rate are not identical across species, but there is a "density-dependent" probability of birth and death. The more abundant species have lower birth rates and higher mortality rates. "The consequence is that when a species becomes rare, its birth rate will increase and death rate will reduce," said He. In other words, species will regulate themselves to make room for each other if they follow the membership rules. "If not, they’re out."

The scientists tested their model using data from six tropical rain forests--these tiny areas can accommodate more than 1000 tree species--across the world. "Our theory offers a better understanding of why tropical rain forests are so species rich," said He. "This rare species advantage regulates dynamics and therefore permits the coexistence of many species

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>