Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nutrient pollution causes a long-term effect on Chesapeake Bay ecosystem


A team of scientists has determined that the growing worldwide problem of increased nutrient pollution, primarily nitrogen and phosphorous, on coastal waterways has altered the ecology of Chesapeake Bay as reported in the most recent issue of Marine Ecology Progress Series.

During the last 50 years, nutrient enrichment has reduced the size of sea grass beds and lowered dissolved oxygen concentrations, both contributing to the degradation of bottom habitats. Excess nutrients can cause large algae blooms which cloud the water. When the algae bloom dies it sinks to the bottom and decays through bacterial processes that rapidly deplete dissolved oxygen. Significant increases in the organic content of 200 year-old sediment suggest stimulation of algae blooms during pre-industrial times. Lead author Dr. W. Michael Kemp, of the University of Maryland Center for Environmental Science, said "By studying long-term effects of nutrient enrichment and detailed processes by which coastal ecosystems have been altered, we will be far better positioned to effect restoration of the estuary’s valuable resources."

These trends have been made even worse by declines in oyster beds, caused by overfishing and disease. The oyster was considered one of the Bay’s dominant bottom feeders consuming vast amounts of algae. Extensive tidal marshes, which serve as effective nutrient buffers, are now being lost due to rising sea levels thus making the problems of nutrient loading even worse.

While the total fish production in the Bay is not believed to have declined, the type of fish have changed. Fish populations have shifted from species living near the seabed to those living in the upper waters. This shift may lead to food chain inefficiencies that favor production of bacteria and small invertebrates.

Even in some Chesapeake Bay tributaries such as the Potomac and Patuxent Rivers, where significant nutrient pollution reductions have occurred, complex ecological relationships have not been fully restored. For example, while algae blooms decreased in the Patuxent River with decreasing nutrients in the last fifteen years, the bottom water dissolved oxygen levels are still very low. Sea grass beds have not increased even with replanting.

The authors cited that an important component of the Chesapeake restoration effort is to revitalize its habitats. Kemp stated, "Even small increases in sea grass beds, oyster reefs, and tidal marshes may lead to substantial benefits toward recovery from nutrient enrichment due to their secondary effects. These habitats filter nutrients out of the system as well as trap and bind fine sediment particles. They support positive-feedback mechanisms that tend to accelerate Bay restoration once the reversal has been set in motion."

David Nemazie | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>