Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutrient pollution causes a long-term effect on Chesapeake Bay ecosystem

29.11.2005


A team of scientists has determined that the growing worldwide problem of increased nutrient pollution, primarily nitrogen and phosphorous, on coastal waterways has altered the ecology of Chesapeake Bay as reported in the most recent issue of Marine Ecology Progress Series.



During the last 50 years, nutrient enrichment has reduced the size of sea grass beds and lowered dissolved oxygen concentrations, both contributing to the degradation of bottom habitats. Excess nutrients can cause large algae blooms which cloud the water. When the algae bloom dies it sinks to the bottom and decays through bacterial processes that rapidly deplete dissolved oxygen. Significant increases in the organic content of 200 year-old sediment suggest stimulation of algae blooms during pre-industrial times. Lead author Dr. W. Michael Kemp, of the University of Maryland Center for Environmental Science, said "By studying long-term effects of nutrient enrichment and detailed processes by which coastal ecosystems have been altered, we will be far better positioned to effect restoration of the estuary’s valuable resources."

These trends have been made even worse by declines in oyster beds, caused by overfishing and disease. The oyster was considered one of the Bay’s dominant bottom feeders consuming vast amounts of algae. Extensive tidal marshes, which serve as effective nutrient buffers, are now being lost due to rising sea levels thus making the problems of nutrient loading even worse.


While the total fish production in the Bay is not believed to have declined, the type of fish have changed. Fish populations have shifted from species living near the seabed to those living in the upper waters. This shift may lead to food chain inefficiencies that favor production of bacteria and small invertebrates.

Even in some Chesapeake Bay tributaries such as the Potomac and Patuxent Rivers, where significant nutrient pollution reductions have occurred, complex ecological relationships have not been fully restored. For example, while algae blooms decreased in the Patuxent River with decreasing nutrients in the last fifteen years, the bottom water dissolved oxygen levels are still very low. Sea grass beds have not increased even with replanting.

The authors cited that an important component of the Chesapeake restoration effort is to revitalize its habitats. Kemp stated, "Even small increases in sea grass beds, oyster reefs, and tidal marshes may lead to substantial benefits toward recovery from nutrient enrichment due to their secondary effects. These habitats filter nutrients out of the system as well as trap and bind fine sediment particles. They support positive-feedback mechanisms that tend to accelerate Bay restoration once the reversal has been set in motion."

David Nemazie | EurekAlert!
Further information:
http://www.chesapeakebay.net/
http://www.umces.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>