Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming dramatically changed ancient forests

14.11.2005


Palmettos in Pennsylvania? Magnolias in Minnesota? The migration of subtropical plants to northern climates may not be too far-fetched if future global warming patterns mirror a monumental shift that took place in the past, new research by an international team of scientists suggests.



The findings, which appear in this week’s issue of the journal Science, provide the first evidence that land plants changed drastically during a period of sudden global warming 55 million years ago, said Jonathan Bloch, a University of Florida vertebrate paleontologist and member of the research team.

"It indicates that should we have a period of rapid global warming on that scale today, we might expect very dramatic changes to the biota of the planet, not just the mammals and other vertebrates, but forests also completely changing," said Bloch, who is a curator at the Florida Museum of Natural History on the UF campus.


Scientists have known there was significant turnover in mammals during this rapid period of global warming called the Paleocene-Eocene Thermal Maximum, in which temperatures rose by perhaps as much as 10 degrees in the relatively short time span of 10,000 years, then lasting for another 80,000 to 100,000 years, Bloch said.

Global warming allowed mammals to emigrate across northern land bridges, marking the first appearance of perissodactlys in the form of the earliest known horse; artiodactyls, a group of even-toed ungulates that includes pigs, camels and hippos; as well as modern primates, he said.

But until now, no clues were available as to what happened to plants during this shift, considered one of the most extreme global warming events during the Cenozoic, the "Age of Mammals," Bloch said. "It was very puzzling because it looked like there was nothing going on with plants, which was rather strange and disconcerting."

Excavations by team leader Scott Wing, a paleontologist at the Smithsonian Institution, in the Bighorn Basin of northwestern Wyoming uncovered fossil leaves and pollen alongside fossilized mammals in rocks that were deposited during this turbulent geologic interval.

"Up until this point we have not had a place in which we have mammal and plant remains preserved in the same rocks spanning what we call the Paleocene-Eocene boundary," Bloch said. "Amazingly, these plants came from what would have been more tropical environments."

Some of the plant remains resembled those found in rock deposits of similar age unearthed in Mississippi, Louisiana and Texas, including relatives of poinsettia and sumac, Bloch said.

However, plant fossils found in the same area dating immediately before and after this period of rising temperatures reflected typical mid-latitude forests of the time and included relatives of dawn redwood, alder, sycamore and walnut, Bloch said. As temperatures cooled, floral newcomers appeared from Europe, including species of linden and wing nut. These plants probably emigrated along the same land bridges that animals traveled, he said.

Because his research specialty is mammals, Bloch said he is particularly interested in understanding how the movement of plants affected the earliest evolution of modern primates, which first appeared throughout the world during this period.

"I would very much like to know what these forests were like when these first modern primates were coming in because it has implications for how these animals lived and behaved right from the beginning," he said.

If the landscape evolved from an initially drier habitat, with patchy open spaces, into a more lush tropical forest with densely packed trees, it might have played a role in the evolution of primates’ climbing skills, Bloch said. The ancestors of living primates would have been leaping through the tree canopy, foraging for fruit and insects, he said.

Partly because of the dramatic change in mammals, including the first appearance of modern primates, and also because of the interval’s rapid temperature change, there has been a wide range of scientific interest in the Paleocene-Eocene boundary, Bloch said.

The warming was caused by a gigantic release of carbon dioxide into the atmosphere that was comparable to the atmospheric effects expected from human burning of fossil fuels, he said.

"You can’t predict the future, but there has been a time in the past where we had similar type of conditions, and we might look to that experience," Bloch said.

Jonathan Bloch | EurekAlert!
Further information:
http://www.flmnh.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>