Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming dramatically changed ancient forests

14.11.2005


Palmettos in Pennsylvania? Magnolias in Minnesota? The migration of subtropical plants to northern climates may not be too far-fetched if future global warming patterns mirror a monumental shift that took place in the past, new research by an international team of scientists suggests.



The findings, which appear in this week’s issue of the journal Science, provide the first evidence that land plants changed drastically during a period of sudden global warming 55 million years ago, said Jonathan Bloch, a University of Florida vertebrate paleontologist and member of the research team.

"It indicates that should we have a period of rapid global warming on that scale today, we might expect very dramatic changes to the biota of the planet, not just the mammals and other vertebrates, but forests also completely changing," said Bloch, who is a curator at the Florida Museum of Natural History on the UF campus.


Scientists have known there was significant turnover in mammals during this rapid period of global warming called the Paleocene-Eocene Thermal Maximum, in which temperatures rose by perhaps as much as 10 degrees in the relatively short time span of 10,000 years, then lasting for another 80,000 to 100,000 years, Bloch said.

Global warming allowed mammals to emigrate across northern land bridges, marking the first appearance of perissodactlys in the form of the earliest known horse; artiodactyls, a group of even-toed ungulates that includes pigs, camels and hippos; as well as modern primates, he said.

But until now, no clues were available as to what happened to plants during this shift, considered one of the most extreme global warming events during the Cenozoic, the "Age of Mammals," Bloch said. "It was very puzzling because it looked like there was nothing going on with plants, which was rather strange and disconcerting."

Excavations by team leader Scott Wing, a paleontologist at the Smithsonian Institution, in the Bighorn Basin of northwestern Wyoming uncovered fossil leaves and pollen alongside fossilized mammals in rocks that were deposited during this turbulent geologic interval.

"Up until this point we have not had a place in which we have mammal and plant remains preserved in the same rocks spanning what we call the Paleocene-Eocene boundary," Bloch said. "Amazingly, these plants came from what would have been more tropical environments."

Some of the plant remains resembled those found in rock deposits of similar age unearthed in Mississippi, Louisiana and Texas, including relatives of poinsettia and sumac, Bloch said.

However, plant fossils found in the same area dating immediately before and after this period of rising temperatures reflected typical mid-latitude forests of the time and included relatives of dawn redwood, alder, sycamore and walnut, Bloch said. As temperatures cooled, floral newcomers appeared from Europe, including species of linden and wing nut. These plants probably emigrated along the same land bridges that animals traveled, he said.

Because his research specialty is mammals, Bloch said he is particularly interested in understanding how the movement of plants affected the earliest evolution of modern primates, which first appeared throughout the world during this period.

"I would very much like to know what these forests were like when these first modern primates were coming in because it has implications for how these animals lived and behaved right from the beginning," he said.

If the landscape evolved from an initially drier habitat, with patchy open spaces, into a more lush tropical forest with densely packed trees, it might have played a role in the evolution of primates’ climbing skills, Bloch said. The ancestors of living primates would have been leaping through the tree canopy, foraging for fruit and insects, he said.

Partly because of the dramatic change in mammals, including the first appearance of modern primates, and also because of the interval’s rapid temperature change, there has been a wide range of scientific interest in the Paleocene-Eocene boundary, Bloch said.

The warming was caused by a gigantic release of carbon dioxide into the atmosphere that was comparable to the atmospheric effects expected from human burning of fossil fuels, he said.

"You can’t predict the future, but there has been a time in the past where we had similar type of conditions, and we might look to that experience," Bloch said.

Jonathan Bloch | EurekAlert!
Further information:
http://www.flmnh.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>