Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid warming caused vegetation changes

14.11.2005


Fossil leaves buried 55 million years ago show, for the first time, that rapid warming not only changed animal communities, but plant communities as well; and that the ancient warm spell may be representative of global warming’s effects in Earth’s future, according to an international team of researchers.



"There has been an absence of fossil leaf sites dating to the Paleocene-Eocene Thermal Maximum (PETM)," says Dr. Francesca A. Smith, postdoctoral researcher in geosciences, Penn State.

Scientists have long known that during the PETM, mammalian communities changed, but without plant fossil samples, they could not say the same for plants. The PETM is unusual because the warming of 9 to 18 degrees Fahrenheit occurred in only 10,000 years, a geologically short time span. Researchers believe that increased carbon dioxide caused the warming, but underlying causes of the increase are still being debated. "The PETM provides an important analog to present-day anthropogenic global warming, because the two episodes are inferred to have similar rates and magnitudes of carbon release and climate change," the researchers report in today’s (Nov. 11) issue of Science.


Dr. Scott Wing, Department of Paleobiology, Smithsonian Museum of Natural History, led the expedition to the southeastern Bighorn Basin, Wyoming, that found new boundary sequences of fossils that covered the change from the Paleocene to the Eocene. These sequences, unlike those found in the past, contained both leaf and pollen fossils.

"Finding fossil leaves from this period is difficult," says Smith. "Leaves are only rarely preserved and the fossil beds for this time period are only 130 to 160 feet thick."

To ensure that the new areas were actually in the proper time period, the researchers used two dating methods. Smith and Dr. Katherine H. Freeman, professor of geosciences, Penn State, looked at the chemical signature of the carbon in the fossils. From marine sediment studies, researchers know that during this time period, the heavier form of carbon, carbon 13, occurred less frequently in the atmosphere. Smith and Freeman identified these fossil beds as having the proper carbon composition for the PETM. Coupling carbon with the mammalian fossils found in the beds, including the oldest known horses that were the size of a cat and the ancestors of modern primates, the researchers identified the beds as coming from the PETM.

Analysis of the plant fossils showed that the plants from before and after the PETM were from typical forests for the time, containing relatives of dawn redwood, alder, sycamore, walnut and sassafras. However, the bean family, including relatives of poinsettia, sumac and paw-paw, dominate the fossils during the PETM. These are plants more commonly found during that time period, 1,000 miles to the south in Mississippi, Louisiana and Texas. These plants migrated north in 10,000 years or less.

The leaf fossils also allowed researchers to look at the PETM climate. By comparing the numbers of smooth edged leaves to toothed leaves, they found that the temperature change in the Bighorn basin was about 9 degrees Fahrenheit warmer during the PETM. By looking at the leaves’ surface areas, researchers could estimate precipitation.

"Using these methods, we can infer the temperature changes and determine that the area was dry at the beginning of this period and wet toward the end," says Smith. "Rainfall declined about 40 percent and later recovered."

At the end of the PETM, forests returned to their original composition with the addition of plants like relatives of the wingnut and linden that migrated into the area from Europe across Arctic land bridges. "So much of the information that we have about ancient terrestrial climate during the PETM comes from the Bighorn basin area because it is one of a handful of terrestrial sequences for that time period," says Smith "To interpret the record, we need to have as much information as we can get."

According to Wing, similarly rapid changes in flora might be expected in the future as a result of human-induced global warming.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>