Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid warming caused vegetation changes

14.11.2005


Fossil leaves buried 55 million years ago show, for the first time, that rapid warming not only changed animal communities, but plant communities as well; and that the ancient warm spell may be representative of global warming’s effects in Earth’s future, according to an international team of researchers.



"There has been an absence of fossil leaf sites dating to the Paleocene-Eocene Thermal Maximum (PETM)," says Dr. Francesca A. Smith, postdoctoral researcher in geosciences, Penn State.

Scientists have long known that during the PETM, mammalian communities changed, but without plant fossil samples, they could not say the same for plants. The PETM is unusual because the warming of 9 to 18 degrees Fahrenheit occurred in only 10,000 years, a geologically short time span. Researchers believe that increased carbon dioxide caused the warming, but underlying causes of the increase are still being debated. "The PETM provides an important analog to present-day anthropogenic global warming, because the two episodes are inferred to have similar rates and magnitudes of carbon release and climate change," the researchers report in today’s (Nov. 11) issue of Science.


Dr. Scott Wing, Department of Paleobiology, Smithsonian Museum of Natural History, led the expedition to the southeastern Bighorn Basin, Wyoming, that found new boundary sequences of fossils that covered the change from the Paleocene to the Eocene. These sequences, unlike those found in the past, contained both leaf and pollen fossils.

"Finding fossil leaves from this period is difficult," says Smith. "Leaves are only rarely preserved and the fossil beds for this time period are only 130 to 160 feet thick."

To ensure that the new areas were actually in the proper time period, the researchers used two dating methods. Smith and Dr. Katherine H. Freeman, professor of geosciences, Penn State, looked at the chemical signature of the carbon in the fossils. From marine sediment studies, researchers know that during this time period, the heavier form of carbon, carbon 13, occurred less frequently in the atmosphere. Smith and Freeman identified these fossil beds as having the proper carbon composition for the PETM. Coupling carbon with the mammalian fossils found in the beds, including the oldest known horses that were the size of a cat and the ancestors of modern primates, the researchers identified the beds as coming from the PETM.

Analysis of the plant fossils showed that the plants from before and after the PETM were from typical forests for the time, containing relatives of dawn redwood, alder, sycamore, walnut and sassafras. However, the bean family, including relatives of poinsettia, sumac and paw-paw, dominate the fossils during the PETM. These are plants more commonly found during that time period, 1,000 miles to the south in Mississippi, Louisiana and Texas. These plants migrated north in 10,000 years or less.

The leaf fossils also allowed researchers to look at the PETM climate. By comparing the numbers of smooth edged leaves to toothed leaves, they found that the temperature change in the Bighorn basin was about 9 degrees Fahrenheit warmer during the PETM. By looking at the leaves’ surface areas, researchers could estimate precipitation.

"Using these methods, we can infer the temperature changes and determine that the area was dry at the beginning of this period and wet toward the end," says Smith. "Rainfall declined about 40 percent and later recovered."

At the end of the PETM, forests returned to their original composition with the addition of plants like relatives of the wingnut and linden that migrated into the area from Europe across Arctic land bridges. "So much of the information that we have about ancient terrestrial climate during the PETM comes from the Bighorn basin area because it is one of a handful of terrestrial sequences for that time period," says Smith "To interpret the record, we need to have as much information as we can get."

According to Wing, similarly rapid changes in flora might be expected in the future as a result of human-induced global warming.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>