Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling of long-term fossil fuel consumption shows 14.5 degree hike in temperature

03.11.2005


If humans continue to use fossil fuels in a business as usual manner for the next several centuries, the polar ice caps will be depleted, ocean sea levels will rise by seven meters and median air temperatures will soar 14.5 degrees warmer than current day.

These are the stunning results of climate and carbon cycle model simulations conducted by scientists at the Lawrence Livermore National Laboratory. By using a coupled climate and carbon cycle model to look at global climate and carbon cycle changes, the scientists found that the earth would warm by 8 degrees Celsius (14.5 degrees Fahrenheit) if humans use the entire planet’s available fossil fuels by the year 2300.

The jump in temperature would have alarming consequences for the polar ice caps and the ocean, said lead author Govindasamy Bala of the Laboratory’s Energy and Environment Directorate.



In the polar regions alone, the temperature would spike more than 20 degrees Celsius, forcing the land in the region to change from ice and tundra to boreal forests.

"The temperature estimate is actually conservative because the model didn’t take into consideration changing land use such as deforestation and build out of cities into outlying wilderness areas," Bala said.

Today’s level of atmospheric carbon dioxide is 380 parts per million (ppm). By the year 2300, the model predicts that amount would nearly quadruple to 1,423 ppm.

In the simulations, soil and living biomass are net carbon sinks, which would extract a significant amount of carbon dioxide that otherwise, would be remaining in the atmosphere from the burning of fossil fuels. However, the real scenario might be a bit different.

"The land ecosystem would not take up as much carbon dioxide as the model assumes," Bala said. "In fact in the model, it takes up much more carbon than it would in the real world because the model did not have nitrogen/nutrient limitations to uptake. We also didn’t take into account land use changes, such as the clearing of forests."

The model shows that ocean uptake of CO2 begins to decrease in the 22nd and 23rd centuries due to the warming of the ocean surface that drives CO2 fluctuations out of the ocean. It takes longer for the ocean to absorb CO2 than biomass and soil.

By the year 2300, about 38 percent and 17 percent of the carbon dioxide released from the burning of all fossil fuels are taken up by land and the ocean, respectively. The remaining 45 percent stays in the atmosphere.

Whether carbon dioxide is released in the atmosphere or the ocean, eventually about 80 percent of the carbon dioxide will end up in the ocean in a form that will make the ocean more acidic. While the carbon dioxide is in the atmosphere, it could produce adverse climate change. When it enters the ocean, the acidification could be harmful to marine life.

The models predict quite a drastic change not only in the temperature of the oceans but also in its acidity content, that would become especially harmful for marine organisms with shells and skeletal material made out of calcium carbonate.

Calcium carbonate organisms, such as coral, serve as climate-stabilizers. When the organisms die, their carbonate shells and skeletons settle to the ocean floor, where some dissolve and some are buried in sediments. These deposits help regulate the chemistry of the ocean and the amount of carbon dioxide in the atmosphere. However, earlier Livermore research found that unrestrained release of fossil-fuel carbon dioxide to the atmosphere could threaten extinction for these climate-stabilizing marine organisms.

"The doubled-CO2 climate that scientists have warned about for decades is beginning to look like a goal we might attain if we work hard to limit CO2 emissions, rather than the terrible outcome that might occur if we do nothing," said Ken Caldeira, of the Department of Global Ecology at the Carnegie Institution and one of the other authors.

Bala said the most drastic changes during the 300-year period would be during the 22nd century in which precipitation change, an increase in atmospheric precipitable water and a decrease in sea ice size are the largest when emissions rates are the highest. During the model runs, sea ice cover disappears almost completely in the northern hemisphere by the year 2150 during northern hemisphere summers.

"We took a very holistic view," Bala said. "What if we burn everything? It will be a wake up call in climate change."

As for the global warming skeptics, Bala said the proof is already evident.

"Even if people don’t believe in it today, the evidence will be there in 20 years," he said. "These are long-term problems."

He pointed to the 2003 European heat wave, and the 2005 Atlantic hurricane season as examples of extreme climate change.

"We definitely know we are going to warm over the next 300 years," he said. "In reality, we may be worse off than we predict."

Other Livermore authors include Arthur Mirin and Michael Wickett, and Christine Delire of ISE-M at the Université Montepellier II. The research appears in the Nov. 1 issue of the American Meteorological Society’s Journal of Climate.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>