Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Logging doubles threat to the Amazon, rivaling clear-cutting, study suggests

21.10.2005


Extent of forest degradation may be twice as high as previously estimated



Human activities are degrading the Amazonian forest at twice the rate previously estimated, suggests a new study that adds the effects of logging to those of clear-cutting. The research appears in the 21 October issue of the journal Science, published by AAAS, the nonprofit science society.

Until now, satellite-based methods for measuring deforestation across large areas have only been capable of detecting clear-cut swaths of land, where all the trees are removed to clear space for farming or grazing.


A new satellite imaging method, developed by Gregory Asner of the Carnegie Institution of Washington and colleagues, detects deforestation on a finer scale, allowing researchers to identify areas where trees have been thinned, due mostly to "selective logging." In this type of deforestation, only certain marketable tree species are cut and logs are transported offsite to saw-mills. Little has been known about the extent or impacts of selective logging in Amazonia until now, according to the authors.

To detect and quantify the amount of selective logging in the five major timber production states of the Brazilian Amazon, the researchers used the new Carnegie Landsat Analysis System. This technology allowed them to delve into each pixel of the image produced by a trio of satellites and determine the percentage of forested and deforested land within each pixel. (In contrast, the conventional interpretation of a satellite image would consider each pixel as entirely forested or deforested.)

"This method gives us an incredible map of the ubiquitous but very diffuse types of disturbances that exist in Brazil or in any tropical forest," Asner said.

The researchers found that, from 1999 to 2002, selective logging added 60 to 128 percent more damaged forest area than was reported for deforestation alone in the same study period.

The total volume of harvested trees represents roughly 10 to 15 million metric tons of carbon removed from the ecosystem, according to the authors. They estimate that this amount represents a 25 percent increase in the overall flow of carbon from the Amazonian forest to the atmosphere.

Logging causes major ecological disruptions as well. Vines threading through the trees can pull down large amounts of vegetation when a tree falls. The forest also becomes drier and more flammable, as the shady canopy is thinned.

"Logged forests are areas of extraordinary damage," Asner said. "A tree crown can be 25 meters. When you knock down a tree it causes a lot of damage in the understory. It’s a debris field down there."

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org
http://www.sciencemag.org

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>