Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Logging doubles threat to the Amazon, rivaling clear-cutting, study suggests

21.10.2005


Extent of forest degradation may be twice as high as previously estimated



Human activities are degrading the Amazonian forest at twice the rate previously estimated, suggests a new study that adds the effects of logging to those of clear-cutting. The research appears in the 21 October issue of the journal Science, published by AAAS, the nonprofit science society.

Until now, satellite-based methods for measuring deforestation across large areas have only been capable of detecting clear-cut swaths of land, where all the trees are removed to clear space for farming or grazing.


A new satellite imaging method, developed by Gregory Asner of the Carnegie Institution of Washington and colleagues, detects deforestation on a finer scale, allowing researchers to identify areas where trees have been thinned, due mostly to "selective logging." In this type of deforestation, only certain marketable tree species are cut and logs are transported offsite to saw-mills. Little has been known about the extent or impacts of selective logging in Amazonia until now, according to the authors.

To detect and quantify the amount of selective logging in the five major timber production states of the Brazilian Amazon, the researchers used the new Carnegie Landsat Analysis System. This technology allowed them to delve into each pixel of the image produced by a trio of satellites and determine the percentage of forested and deforested land within each pixel. (In contrast, the conventional interpretation of a satellite image would consider each pixel as entirely forested or deforested.)

"This method gives us an incredible map of the ubiquitous but very diffuse types of disturbances that exist in Brazil or in any tropical forest," Asner said.

The researchers found that, from 1999 to 2002, selective logging added 60 to 128 percent more damaged forest area than was reported for deforestation alone in the same study period.

The total volume of harvested trees represents roughly 10 to 15 million metric tons of carbon removed from the ecosystem, according to the authors. They estimate that this amount represents a 25 percent increase in the overall flow of carbon from the Amazonian forest to the atmosphere.

Logging causes major ecological disruptions as well. Vines threading through the trees can pull down large amounts of vegetation when a tree falls. The forest also becomes drier and more flammable, as the shady canopy is thinned.

"Logged forests are areas of extraordinary damage," Asner said. "A tree crown can be 25 meters. When you knock down a tree it causes a lot of damage in the understory. It’s a debris field down there."

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org
http://www.sciencemag.org

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>