Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seafloor creatures destroyed by ice action during ice ages


The ice ages made massive changes to the Earth’s landscape. But what was happening below the ice in the oceans?

Research by marine scientists reveals that it was a time of mass destruction as whole communities of animals were wiped out by ice sheets scouring the sea floor.

In the past it has been thought that these ecosystems somehow dodged extinction by recolonising from nearby habitats that escaped obliteration. But researchers at the National Oceanography Centre, Southampton (NOC) and the British Antarctic Survey (BAS) reveal a bleaker scenario.

Dr Sven Thatje, an ecologist at NOC has been working with geoscientists, Dr Claus-Dieter Hillenbrand and Dr Rob Larter at BAS examining one of the harshest environments on Earth - the Antarctic seafloor.

Writing in the October issue of Trends in Ecology & Evolution the scientists provide new evidence that suggests that seafloor organisms were either erased by the advance of ice sheets across the Antarctic continental shelf or starved to death as links in the food chain were broken by the permanent ice cover. There would have been no refuge for shallower living animals further down the continental slope, as huge sediment slides would have buried them. Typically these ecosystems would have been made up of sponges, urchins, sea fan corals, and starfish.

Dr Thatje said: ’We show that during ice ages seafloor organisms emigrated to the deep sea - below the effects of the sediment slides and ice. From there, organisms may have invaded open marine shelters of the Antarctic shelf, which were not affected by the advance of ice masses. Or these animals may have recolonised the Antarctic shelf from the deep-sea during the warm period following each ice age.

’Either way it is an impressive feat against the odds as the extreme cold means that these animals respond much more slowly to the destruction of their habitat than elsewhere in the oceans. They have lower metabolic rates that lower their growth and reproductive rates. Elsewhere in the oceans, a brisingid starfish would reproduce annually and live for ten years. In the Antarctic these starfish can reach 100-years-old but reproduce only once every ten years. This means that full community recuperation takes up to hundreds of years.’

Dr Claus-Dieter Hillenbrand explained: ’Until now it was commonly thought that the destructive action of the ice sheets was not significant enough to eradicate all the fauna and that desolate patches were recolonised from surrounding areas. But our research confirms that the destruction was wholesale with very little surviving. Even today calving icebergs ploughing across the seafloor destroy everything in their path. Imagine the impact of ice sheets during the ice ages that covered a much wider area in a time of lower sea levels.’

The team’s research will lead to a radical rethink of the evolutionary history of Antarctica as the work challenges all the accepted theories. The scientists argue that shallow water animals were retreating to the deep ocean and then returning to recolonise Antartica’s shelf seas. Clues to how these two very different communities could have achieved this may lie in the animals’ DNA.

Sven Thatje continued: ’Our work means that the text books will need to be rewritten. Our next task is to reconstruct what happened in Antarctica during these periods of climate change and study the genetic and biological links between deep sea and shallow water communities.’

Kim Marshall-Brown | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>