Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seafloor creatures destroyed by ice action during ice ages


The ice ages made massive changes to the Earth’s landscape. But what was happening below the ice in the oceans?

Research by marine scientists reveals that it was a time of mass destruction as whole communities of animals were wiped out by ice sheets scouring the sea floor.

In the past it has been thought that these ecosystems somehow dodged extinction by recolonising from nearby habitats that escaped obliteration. But researchers at the National Oceanography Centre, Southampton (NOC) and the British Antarctic Survey (BAS) reveal a bleaker scenario.

Dr Sven Thatje, an ecologist at NOC has been working with geoscientists, Dr Claus-Dieter Hillenbrand and Dr Rob Larter at BAS examining one of the harshest environments on Earth - the Antarctic seafloor.

Writing in the October issue of Trends in Ecology & Evolution the scientists provide new evidence that suggests that seafloor organisms were either erased by the advance of ice sheets across the Antarctic continental shelf or starved to death as links in the food chain were broken by the permanent ice cover. There would have been no refuge for shallower living animals further down the continental slope, as huge sediment slides would have buried them. Typically these ecosystems would have been made up of sponges, urchins, sea fan corals, and starfish.

Dr Thatje said: ’We show that during ice ages seafloor organisms emigrated to the deep sea - below the effects of the sediment slides and ice. From there, organisms may have invaded open marine shelters of the Antarctic shelf, which were not affected by the advance of ice masses. Or these animals may have recolonised the Antarctic shelf from the deep-sea during the warm period following each ice age.

’Either way it is an impressive feat against the odds as the extreme cold means that these animals respond much more slowly to the destruction of their habitat than elsewhere in the oceans. They have lower metabolic rates that lower their growth and reproductive rates. Elsewhere in the oceans, a brisingid starfish would reproduce annually and live for ten years. In the Antarctic these starfish can reach 100-years-old but reproduce only once every ten years. This means that full community recuperation takes up to hundreds of years.’

Dr Claus-Dieter Hillenbrand explained: ’Until now it was commonly thought that the destructive action of the ice sheets was not significant enough to eradicate all the fauna and that desolate patches were recolonised from surrounding areas. But our research confirms that the destruction was wholesale with very little surviving. Even today calving icebergs ploughing across the seafloor destroy everything in their path. Imagine the impact of ice sheets during the ice ages that covered a much wider area in a time of lower sea levels.’

The team’s research will lead to a radical rethink of the evolutionary history of Antarctica as the work challenges all the accepted theories. The scientists argue that shallow water animals were retreating to the deep ocean and then returning to recolonise Antartica’s shelf seas. Clues to how these two very different communities could have achieved this may lie in the animals’ DNA.

Sven Thatje continued: ’Our work means that the text books will need to be rewritten. Our next task is to reconstruct what happened in Antarctica during these periods of climate change and study the genetic and biological links between deep sea and shallow water communities.’

Kim Marshall-Brown | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>