Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate model predicts dramatic changes over next 100 years

18.10.2005


The most comprehensive climate model to date of the continental United States predicts more extreme temperatures throughout the country and more extreme precipitation along the Gulf Coast, in the Pacific Northwest and east of the Mississippi.


These graphics illustrate some of the changes in climate predicted for the 21st century by Purdue University’s Noah Diffenbaugh and his team of scientists using a computer simulation they recently completed. The simulation indicates that the entire continental United States will experience more intense heat waves, most dramatically in the desert Southwest (top figure). It also indicates that several areas, notably the Gulf Coast, will experience more storms that bring heavy precipitation (bottom figure). The computer model, which incorporates many climatic factors in unprecedented detail, suggests that these changes will be significant enough to disrupt our national economy and infrastructure. (Purdue graphic/Diffenbaugh Lab)



The climate model, run on supercomputers at Purdue University, takes into account a large number of factors that have been incompletely incorporated in past studies, such as the effects of snow reflecting solar energy back into space and of high mountain ranges blocking weather fronts from traveling across them, said Noah S. Diffenbaugh, the team’s lead scientist. Diffenbaugh said a better understanding of these factors – coupled with a more powerful computer system on which to run the analysis – allowed the team to generate a far more coherent image of what weather we can expect to encounter in the continental United States for the next century. Those expectations, he said, paint a very different climate picture for most parts of the country.

"This is the most detailed projection of climate change that we have for the U.S.," said Diffenbaugh, an assistant professor of earth and atmospheric sciences in Purdue’s College of Science and a member of the Purdue Climate Change Research Center. "And the changes our model predicts are large enough to substantially disrupt our economy and infrastructure."


The research team also includes Diffenbaugh’s Purdue colleague Robert J. Trapp, as well as Jeremy S. Pal and Filippo Giorgi of the Abdus Salam International Centre for Theoretical Physics in Trieste, Italy. Their paper appears in today’s (Monday, Oct. 17) online edition of the journal Proceedings of the National Academy of Sciences.

Climate models are sophisticated computer codes that attempt to incorporate as many details about the complex workings of our environment as possible. Hundreds of dynamic processes, such as ocean currents, cloud formations, vegetation cover and – of particular import – the increase in atmospheric greenhouse gases, are programmed into the computers, which then attempt to discern the net effects on square-shaped plots of land that represent small pieces of the Earth’s surface. The smaller these squares are, the better the resolution the model can provide.

"Just as a digital camera that creates images with more pixels can result in a better photograph, we want to make those squares as small as possible," Diffenbaugh said. "We’d also like to incorporate as much of the climate system as we can so the analysis will be realistic."

Despite the number-crunching power of the linked computers used for these simulations, a model must factor in so many changing variables that a full analysis can require months of nonstop computational effort. Diffenbaugh’s team required five months to run their model on a cluster of Sun computers at the Rosen Center for Advanced Computing on Purdue’s campus.

"The results were worth it, though, because this model allows us to project changes in climate with unprecedented resolution," Diffenbaugh said.

Until now, the fastest computers have been used to resolve squares 50 kilometers to a side, which can return a reasonably accurate but rather grainy "photograph" of climate change.

"We can now analyze areas that are only 25 kilometers to a side, which, for example, allows us to discern more clearly where California’s central valley stops and the Sierra Nevada mountain range begins."

With their improvements over previous models, the team has been able to make several observations about the change in climate over the next century, particularly for the late century when greenhouse gas accumulation could have greater effect than, say, a decade from now.

"These projections are not necessarily about specific weather events," Diffenbaugh said. "But they do give us a good idea about what kind of weather to expect over the long run in a particular part of the country."

Some of these expectations include:

• The desert Southwest will experience more heat waves of greater intensity, combined with less summer precipitation. Water is already at a premium in the four-corners states and southern Nevada and, as years pass, even less water will be available for the region’s burgeoning populations, with extreme hot events increasing in frequency by as much as 500 percent.

• The Gulf Coast will be hotter and will receive its precipitation in greater volumes over shorter time periods. "The region actually will get more rainfall than it does now, but it will not be steady," Diffenbaugh said. "We project more dry spells punctuated by heavier rainfalls. We need to perform further analyses to understand how much of this is related to tropical cyclone activity."

• In the northeastern United States – roughly the region east of Illinois and north of Kentucky – summers will be longer and hotter. "Imagine the weather during the hottest two weeks of the year," Diffenbaugh said. "The area could experience temperatures in that range lasting for periods of up to two months by century’s end."

•Similarly, the continental United States will experience an overall warming trend: Temperatures now experienced during the coldest two weeks of the year will be a past memory, and winter’s length will diminish as well, according to the model.

The model, Diffenbaugh said, assumes that greenhouse gases will attain a concentration more than twice their current levels, but he said he is confident that the model’s performance gives as accurate a picture of the future as we can hope for at the moment.

"We checked our model’s performance by analyzing the period from 1961 to 1985 for which, of course, we do not need a prediction," Diffenbaugh said. "The model performed admirably, which tells us we’ve got a good understanding of how to represent the physical world in terms of computer code. It’s certainly not perfect, but we’ll need a computer at least 100 times as powerful as the cluster we used to really improve the accuracy. We would like to have access to such computing power in the future."

Diffenbaugh emphasized that, while the model was in no way designed to return an alarmist image of our climate’s future, the picture it painted should be considered.

"The more detail we look at with these models, the more dramatic the climate’s response is," he said. "Critics have complained that climate models lack sufficient spatial detail to be trusted. In terms of looking at the whole contiguous United States, we’ve quadrupled the spatial detail and, as a result, it appears that climate change is going to be even more dramatic than we previously thought. Of course, we can never be completely certain of the future, but it’s clear that as we consider more and more detail, the picture of future climate change becomes more and more severe."

Commenting on the study, Stanford University’s Stephen H. Schneider said the results confirm scientists’ suspicions about the future of climate change.

"This study is the latest and most detailed simulation of climatic change in the United States," said Schneider, who is Stanford’s Melvin and Joan Lane Professor for Interdisciplinary Environmental Studies. "Critics have asserted that the coarse resolution of previous studies made their sometimes dire predictions suspect, but this new result with a very high resolution grid over the United States shows potential climatic impacts at least as significant as previous results with lower resolution model. As the authors wisely note, such potential impacts certainly should not be glibly dismissed."

This research was funded in part by a grant from the National Science Foundation.

The Rosen Center for Advanced Computing is a research computing center named in memory of Saul Rosen, who served as director of Purdue’s Computing Center from 1968-87 and who helped to establish Purdue as a pioneering academic institution in high-performance computing. The Rosen Center is a part of Information Technology at Purdue, which is responsible for planning and coordinating the central computing and telecommunications systems on the West Lafayette campus.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Noah S. Diffenbaugh, (765) 494-0754, diffenbaugh@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>