Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Acid rain” and forest mass: another perspective

14.10.2005


A few years ago the study of the effects of atmospheric deposition on forest ecosystems reached beyond the scientific sphere and the term “acid rain” was coined. This problem, which ignores frontiers, happens because, due to the burning of fossil fuels, the amount of sulphur and nitrogen oxides in the atmosphere is greater than that derived from natural processes.



Oxides, in the presence of water vapour and under the oxido-reduction conditions present in the atmosphere, produce acids that are deposited, amongst other places, on the forest biomass. Also, intensification in the cattle sector, together with stabling and grouping together of herds, have given rise to the concentration of ammonia emissions in certain zones. This compound, deposited close to the sources of emission, is able to react with the acidic ions deposited at the same time. Subsequently, certain bacteria are capable of oxidising the compound, thus forming nitrate and liberating protons that acidify the soil.

Amongst the effects of the deposition of these compounds on the forest mass are the well-known nutrition disorders of the same. One classic effect is that of cation deficit (particularly magnesium) due to the washing both of the forest canopy and the soil produced by these together with anions (sulphates and nitrates). This problem is not very common in forest ecosystems close to the sea given that, in these conditions, the uptake of magnesium with precipitation is high. Another consequence is what is known as the eutrofization of terrestrial ecosystems due to the increase in nitrogen availability (saturation) in systems where historically this element has been the limiting factor in productivity.


In this research, the recycling of nutrients was studied in two, five-year period stages and in two young radiata pine forests (the first stage) and in two oak woods (the second). To this end, weekly samples of rain, transcolation (fraction of the precipitation that passes through the forest canopy), and litterfall (vegetable material fallen from trees: leaves, twigs, fruit, and so on), the first 25 cm of mineral soil and green foliage were taken and analysed chemically, according to standard protocols. The location of parcels was carried out as a function of their distance from different foci of emission of contaminants. A flow equilibrium model for the canopy was drawn up together with a generalised micrometeorological model in order to estimate the total deposition of atmospheric constituents. Also, a model for foliar growth and abscision was designed using proportions of the various cohorts of the samples of green branches and litterfall.

The total nitrogen deposition was greater that that deemed to be the admissible critical load in European forest ecosystems so that the nitrogen saturation of the ecosystems studied is, or shortly will be, a fact. The canopy of the forests was able to neutralise the atmospheric deposition in an effective manner although the potential acidity was greater in those areas near emission foci. The uptake of acidifying ions and nitrogen caused an acceleration of the return of nutrients (amount of nutrients that the vegetation gives back to the soil together with the litterfall and foliar excretion) and a drop in their retranslocation (reabsorption of nutritive elements). Thus, the efficiency in the use of cations was affected by the atmospheric deposition of contaminants. Magnesium deficiency was observed in all the adult formations studied. The acceleration of the return of nutrients and the drop in the efficiency of their use is proposed as an explanation of this disorder.

Thanks to this investigation, it was concluded that the atmospheric deposition of contaminants produces damage in the forest masses of Bizkaia and may be aggravated in the future.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>