Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change will stress stormwater drainage systems

12.10.2005


Study examines culvert capacity in Keene, NH



The storm that dropped over 10 inches of rain on the Keene, NH area this past weekend will be a more frequent phenomenon due to climate change, according to two New Hampshire researchers. Michael Simpson and Latham Stack headed a research team within the Environmental Studies Department at Antioch New England Graduate School in Keene, NH. Their recently completed study is groundbreaking because it is the first to identify the specific costs required to prepare for the more intense storms induced by climate change.

According to lead scientist Latham Stack, studies of this kind are crucial to helping communities prepare for the impacts of climate change: "Because of the persistence of greenhouse gases in the atmosphere, the impacts of climate change are now unavoidable. We may have a window of opportunity to prepare civil infrastructures. While expensive, these preparations can be affordable if undertaken far enough in advance."


Just days before the storm that hit the City this weekend, the research team reported their findings to Keene’s Cities for Climate Protection Steering Committee. The researchers’ analysis found that current engineering design specifications for culvert sizing are inadequate to handle the rainfall intensities predicted under climate change. The team’s model projected substantial culvert failure in their study area of the White and Black Brook watersheds in the northwest sector of the city.

These culverts will fail because they have insufficient capacity for the increased flow of water coming down the watershed. Undersized culverts act as a dam, causing water to backup and overrun roads. The results are both flooding of neighboring properties and undercutting and erosion damage to culverts and roads.

The research team’s rain gauge on Dunbar Street recorded 11.5 inches falling on Keene in 24 hours during this weekend’s storm. This amount of rain is almost triple the design standard currently used by engineers to size culverts. The resulting damage and flooding, not only in the study’s watersheds but throughout Keene, will have a substantial fiscal impact on the City’s budget. The Antioch study estimated the cost of upgrading culverts and found this to be expensive, but comparatively small in relation to costs incurred by the private and public sectors in the wake of the current storm.

Project leader Michael Simpson noted that "Our research focused only on a small section of Keene, NH, but the model we developed to project climate change induced culvert failures could be applied to any region of the world."

This study makes an important contribution to preparing communities for climate change.

Michael H. Simpson | EurekAlert!
Further information:
http://www.antiochne.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>