Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shredded tires a cheap, environmentally friendly way to cover landfills

29.09.2005


Placing shredded tires on top of -- rather than in -- landfills can save money and benefit the environment, researchers from the University of Illinois say.



Timothy Stark, a professor of civil and environmental engineering at the University of Illinois at Urbana-Champaign, and Krishna Reddy, a professor of civil engineering at the University of Illinois at Chicago, recently evaluated the use of shredded tires as a drainage material in waste-containment systems. Shredding tires into chips roughly 4 inches by 6 inches, they report, offers a simple and cost-effective way of providing drainage for modern landfills, remediating older landfills, and disposing of mountains of scrap tires.

Nearly 280 million tires are discarded annually in the United States. Piles of worn-out tires can become eyesores and breeding grounds for mosquitoes. In landfills, intact tires can collect methane (produced by decomposing waste) and create potential fire hazards. Over time, these tires can work their way to the surface, where they can damage liner covers and cause increased leachate production that could contaminate groundwater.


"As a result, many states now require that scrap tires be shredded into chips prior to disposal," Reddy said. "Instead of simply burying those chips with all the other waste, we suggest using them as a drainage layer in both modern and abandoned landfills."

The drainage layer prevents water from percolating through the waste and polluting the ground water, Reddy said. Typically, the drainage layer is composed of sand or gravel, which must be purchased and transported to the landfill.

To investigate the feasibility of using shredded tires as a surrogate drainage material, scrap tires were shredded and distributed as drainage layers at two landfills: one in southern Illinois and the other near Chicago.

Stark and Reddy monitored the two sites for such characteristics as settlement, erosion, flow rates and water quality, and compared them with conventional sites that used sand or gravel. The researchers also measured the permeability of tire chips in the laboratory.

"Our research shows that replacing the sand or gravel with a layer of tire chips works just as well and costs less," Stark said. "The tires must be shredded for disposal anyway, so there is fairly little expense compared to buying and hauling sand or gravel."

The remediation of old landfills could consume huge quantities of scrap tires. "A drainage layer one-foot-thick covering one acre requires about 70,000 tires," Stark said. "A typical landfill covers 10 to 20 acres, and there are about 150 abandoned landfills in Illinois, alone, that are in need of some degree of remediation."

Shredded tires also could be used as backfill behind retaining walls and in other locations where sand or gravel is commonly used, the researchers report.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>