Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeezing out dune plants

26.09.2005


"Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats"



Researchers from Texas A&M University created a model to better understand the impacts of development and coastal erosion on plant communities, including plants that grow in the ever-shrinking strip of habitat between land and the ocean. Rusty Feagin, Douglas Sherman, and William Grant simulated varying levels of sea-level rise to understand the effects of erosion and development on sand dune plants. Their research appears in the September issue of Frontiers in Ecology and the Environment.

In most circumstances, as coastlines erode, plant communities are displaced away from the ocean, unless blocked by a barrier, such as a cliff. In areas like Galveston Island, natural cliffs are not the issue, but development and non-native lawns block the plants’ migration.


Creating models to explore low, medium, and high increases in sea levels for Galveston Island, Feagin and colleagues found that the combination of human-created barriers and sea level rise trapped plants in a small zone, altering the plant population as well as the dune structure.

Larger, sturdier plants – late-succession species – are the most important to preserve, yet these are the most likely species to be lost. These plants are critical in the formation of dunes, binding sediments, and reducing erosion, both in the long term and during events such as hurricanes. They also provide critical habitat for endangered animals such as the Kemp’s ridley sea turtle (Lepidochelys kempii).

According to the scientists, in a low sea-rise scenario, plant communities fully developed over five years, but in cases of moderate and high sea level rise, plant communities were too stressed to grow in many areas, leading to smaller dunes and an eventual breakdown of dune formation. In the higher water scenarios, the plant populations no longer provided windblocks, elevated dune structures, or added to the sand and soil fertility.

On Galveston Island, "the loss of such species is already occurring, where sea oats (Uniola paniculata) have disappeared due to a combination of human-induced disturbance and climate change," say the researchers.

All this means faster erosion and less protection for the people, animals, and buildings on Galveston Island.

Annie Drinkard | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>