Marine bacterium suspected to play role in global carbon and nitrogen cycles

Scientists successfully grow ’dwarf belonging to the sea’ in laboratory

Scientists are now revisiting, and perhaps revising, their thinking about how Archaea, an ancient kingdom of single-celled microorganisms, are involved in maintaining the global balance of nitrogen and carbon. Researchers have discovered the first Archaea known to oxidize ammonia for energy and metabolize carbon dioxide by successfully growing the tentatively named, Nitrosopumilus maritimus, in the lab.

“Data from several cultivation-independent, molecular experiments led us to suspect that Archaea could be involved in the marine nitrogen cycle. Subsequently having the organism isolated in the lab allowed us to confirm our suspicions,” said David Stahl, professor of civil and environmental engineering at the University of Washington. Stahl’s lab group specializes in environmental microbiology and how microbial communities function in diverse locations including the oceans, hot springs, animal intestines and the human mouth.

Archaea have primarily been associated with extreme environments like hot springs and deep-sea vents, but about a decade ago molecular studies proved their abundance in more common environs including the open ocean, freshwater and soil. Subsequent efforts to grow various samples of these organisms led to this cultivation of N. maritimus, or “dwarf belonging to the sea,” by Stahl and scientists at the Woods Hole Oceanographic Institution.

They report their work in the Sept. 22 issue of the journal Nature.

As the true range and relationship of Archaea to other microbes is revealed, information about N. maritimus will serve as benchmarks for all microbiologists. Biochemical and genomic studies are already underway to learn the mechanisms by which N. maritimus uses nitrogen and how its physiology compares to other microorganisms.

The National Science Foundation’s (NSF) Microbial Observatories (MO) program as well as an NSF postdoctoral fellowship in microbial biology supported this work. In addition to molecular and genome-enabled studies, the MO program funds new developments in the laboratory cultivation of novel microorganisms–a worthy endeavor considering that less than 1 percent of Earth’s microorganisms have been cultured in the lab.

Matt Kane, NSF program manager for this research said, “This is a great example of how new approaches to microbial cultivation and cutting-edge molecular techniques can complement one another to achieve big advances in our understanding of the complexity of our global ecosystem.” Kane says studies like these continue to highlight the importance of non disease-causing microorganisms and their critical role in our understanding of global environmental cycles.

Media Contact

Randy Vines EurekAlert!

More Information:

http://www.nsf.gov

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors