Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine bacterium suspected to play role in global carbon and nitrogen cycles

23.09.2005


Scientists successfully grow ’dwarf belonging to the sea’ in laboratory



Scientists are now revisiting, and perhaps revising, their thinking about how Archaea, an ancient kingdom of single-celled microorganisms, are involved in maintaining the global balance of nitrogen and carbon. Researchers have discovered the first Archaea known to oxidize ammonia for energy and metabolize carbon dioxide by successfully growing the tentatively named, Nitrosopumilus maritimus, in the lab.

"Data from several cultivation-independent, molecular experiments led us to suspect that Archaea could be involved in the marine nitrogen cycle. Subsequently having the organism isolated in the lab allowed us to confirm our suspicions," said David Stahl, professor of civil and environmental engineering at the University of Washington. Stahl’s lab group specializes in environmental microbiology and how microbial communities function in diverse locations including the oceans, hot springs, animal intestines and the human mouth.


Archaea have primarily been associated with extreme environments like hot springs and deep-sea vents, but about a decade ago molecular studies proved their abundance in more common environs including the open ocean, freshwater and soil. Subsequent efforts to grow various samples of these organisms led to this cultivation of N. maritimus, or "dwarf belonging to the sea," by Stahl and scientists at the Woods Hole Oceanographic Institution.

They report their work in the Sept. 22 issue of the journal Nature.

As the true range and relationship of Archaea to other microbes is revealed, information about N. maritimus will serve as benchmarks for all microbiologists. Biochemical and genomic studies are already underway to learn the mechanisms by which N. maritimus uses nitrogen and how its physiology compares to other microorganisms.

The National Science Foundation’s (NSF) Microbial Observatories (MO) program as well as an NSF postdoctoral fellowship in microbial biology supported this work. In addition to molecular and genome-enabled studies, the MO program funds new developments in the laboratory cultivation of novel microorganisms--a worthy endeavor considering that less than 1 percent of Earth’s microorganisms have been cultured in the lab.

Matt Kane, NSF program manager for this research said, "This is a great example of how new approaches to microbial cultivation and cutting-edge molecular techniques can complement one another to achieve big advances in our understanding of the complexity of our global ecosystem." Kane says studies like these continue to highlight the importance of non disease-causing microorganisms and their critical role in our understanding of global environmental cycles.

Randy Vines | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>