Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sight for sore eyes: ancient fish see colour


The Australian lungfish—one of the world’s oldest fishes and related to our ancient ancestors—may have been viewing rivers in technicolour long before dinosaurs roamed the Earth.

Recent work by postgraduate student Helena Bailes at the University of Queensland Australia, has found these unusual fish have genes for five different forms of visual pigment in their eyes. Humans only have three.

Helena is one of 13 early-career researchers who have presented their work to the public and the media for the first time as part of the national program Fresh Science.

One of the Fresh Scientists will win a trip to the UK courtesy of the British Council to present his or her work to the Royal Institution.

Night and day (colour) vision are controlled by different light sensing cells known respectively as rods and cones. Humans have a single type of rod and three types of cone, each containing a different pigment gene tuned to red, green and blue wavelengths.

Lungfish possess two additional pigments that were lost in mammals, Bailes says. They are tuned to longer wavelengths than in most other fish.

“Lungfish are very large, slow-moving fish, so vision was always assumed to be of little importance” she says. “This work may change that theory.”

Lungfish are ‘living fossils’ unchanged for over 100 million years. The Australian species (Neoceratodus forsteri) is the most primitive of the living lungfishes.

It is a threatened species protected from fishing which lives in only a handful of rivers in south east Queensland.

“The only way to find out how the first creatures on land saw the world is to look at their closest living relative: the Australian lungfish,” Helena says.

The photoreceptive cells, which house the visual pigments, are bigger in lungfish than for any other animal with a backbone. This probably makes them more sensitive to light.

“We keep discovering ways in which these animals are quite different from other fish,” Helena says. “Their eyes seem designed to optimise both sensitivity and colour vision with large cells containing different visual pigments.”

She now is hoping that behavioural research can find out how these fish are using their eyes for colour vision in the wild.

“We may then learn what Queensland rivers look like to some of their oldest inhabitants, before those inhabitants are wiped out,” Bailes says.

Niall Byrne | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>