Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF Researchers Studying Storm Surge Effects of Hurricanes on Florida Cities

16.09.2005


Category 4 hurricane could cause a storm surge of as much as 25 feet in Tampa Bay, according to a University of Central Florida researcher who is looking at the risks Florida cities face from tidal surges and flooding.



Scott Hagen, an associate professor of Civil and Environmental Engineering, and his team of graduate students have started analyzing the potential effects of a Category 4 hurricane striking the Tampa Bay region. They ran their storm surge model with wind and pressure fields for hypothetical hurricanes with three different paths and traveling at two different speeds, 5 and 15 mph. They concluded that such storms would produce surges of 20 to 25 feet in parts of Tampa Bay.

Hagen and the graduate students also plan to study the potential effects of storm surges on Florida’s east coast, particularly Miami and Jacksonville. They are conducting this early work on their own initiative with a long-term goal of helping the state become better prepared for hurricanes.


“We’ll never have a flood up to our rooftops like New Orleans, but that doesn’t mean there won’t be pockets of flooding in our cities that have the potential to cause drownings,” said Hagen, who is director of the Coastal Hydroscience Analysis, Modeling and Predictive Simulations Laboratory, which is known as the CHAMPS Lab.

Hagen said cities will have to balance their risks of storm surges with the costs of fortifying sea walls and levees when they decide how much protection they want to add. They also need to consider the gradually rising sea level, he said.

“Usually, we’ll say if we have a 99.5 percent confidence level that it’s not going to fail, we’re going to feel pretty good,” Hagen said. “We can live with that year in and year out, but there’s still that one-half percent chance, and that’s what you saw in New Orleans.”

The research team’s analysis of Tampa Bay showed the highest storm surges, about 25 feet, result from a hurricane moving at 15 mph with maximum winds of 140 mph. While the maximum storm surge levels for a storm moving at 5 mph were a few feet lower, the surge levels remained high for much longer and therefore posed more serious risks.

Graduate students working with Hagen are Peter Bacopoulos of Daytona Beach, David Coggin of Orange Park, Yuji Funakoshi of Tokyo and Mike Salisbury of Fort Pierce.

In related efforts, Hagen and the students are part of a program created to improve the national system for forecasting winds, waves and storm surges related to hurricanes. The goal of that project, funded by the National Oceanographic Partnership Program, is to generate real-time, probabilistic storm surge elevations for the United States’ East Coast and Gulf of Mexico based on potential hurricane tracks. The results will help governments issue more accurate emergency advisories during storms. UCF’s partners in that effort include the universities of Miami and Florida, the U.S. Army Corps of Engineers, the National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory Hurricane Research Division and Oceanweather Inc.

Hagen and his students also collaborate with the National Weather Service Forecast Office in Peachtree City, Ga., on real-time forecasting for coastal rivers. The National Oceanic and Atmospheric Administration also is funding the CHAMPS Lab to develop a real-time forecasting system for the St. Johns River.

Chad Binette | EurekAlert!
Further information:
http://champs.cecs.ucf.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>