Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCF Researchers Studying Storm Surge Effects of Hurricanes on Florida Cities


Category 4 hurricane could cause a storm surge of as much as 25 feet in Tampa Bay, according to a University of Central Florida researcher who is looking at the risks Florida cities face from tidal surges and flooding.

Scott Hagen, an associate professor of Civil and Environmental Engineering, and his team of graduate students have started analyzing the potential effects of a Category 4 hurricane striking the Tampa Bay region. They ran their storm surge model with wind and pressure fields for hypothetical hurricanes with three different paths and traveling at two different speeds, 5 and 15 mph. They concluded that such storms would produce surges of 20 to 25 feet in parts of Tampa Bay.

Hagen and the graduate students also plan to study the potential effects of storm surges on Florida’s east coast, particularly Miami and Jacksonville. They are conducting this early work on their own initiative with a long-term goal of helping the state become better prepared for hurricanes.

“We’ll never have a flood up to our rooftops like New Orleans, but that doesn’t mean there won’t be pockets of flooding in our cities that have the potential to cause drownings,” said Hagen, who is director of the Coastal Hydroscience Analysis, Modeling and Predictive Simulations Laboratory, which is known as the CHAMPS Lab.

Hagen said cities will have to balance their risks of storm surges with the costs of fortifying sea walls and levees when they decide how much protection they want to add. They also need to consider the gradually rising sea level, he said.

“Usually, we’ll say if we have a 99.5 percent confidence level that it’s not going to fail, we’re going to feel pretty good,” Hagen said. “We can live with that year in and year out, but there’s still that one-half percent chance, and that’s what you saw in New Orleans.”

The research team’s analysis of Tampa Bay showed the highest storm surges, about 25 feet, result from a hurricane moving at 15 mph with maximum winds of 140 mph. While the maximum storm surge levels for a storm moving at 5 mph were a few feet lower, the surge levels remained high for much longer and therefore posed more serious risks.

Graduate students working with Hagen are Peter Bacopoulos of Daytona Beach, David Coggin of Orange Park, Yuji Funakoshi of Tokyo and Mike Salisbury of Fort Pierce.

In related efforts, Hagen and the students are part of a program created to improve the national system for forecasting winds, waves and storm surges related to hurricanes. The goal of that project, funded by the National Oceanographic Partnership Program, is to generate real-time, probabilistic storm surge elevations for the United States’ East Coast and Gulf of Mexico based on potential hurricane tracks. The results will help governments issue more accurate emergency advisories during storms. UCF’s partners in that effort include the universities of Miami and Florida, the U.S. Army Corps of Engineers, the National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory Hurricane Research Division and Oceanweather Inc.

Hagen and his students also collaborate with the National Weather Service Forecast Office in Peachtree City, Ga., on real-time forecasting for coastal rivers. The National Oceanic and Atmospheric Administration also is funding the CHAMPS Lab to develop a real-time forecasting system for the St. Johns River.

Chad Binette | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>