Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Morphology of fossil salamanders reflects climate change


A fossil record of the Tiger Salamander (Ambystoma tigrinum) shows population-wide changes in body size and morphology in response to climate change over the last 3,000 years. The observed changes offer predictions about the response of the species to future climate change, and the impact on the ecosystem. The research is published in the open access journal, BMC Ecology.

Researchers analysed a late-Holocene fossil record to track morphological traits in the Tiger Salamander through the last 3,000 years. The team, led by Elizabeth Hadly from Stanford University, United States, analysed trends in the fossil record within the context of known climate change, to distinguish patterns of response correlating to specific climatic periods during this time.

The fossils were all collected from Lamar Cave in Yellowstone National Park in Wyoming, United States. The cave deposits were dated and divided into five time periods according to their estimated age. The researchers then grouped the fossils into four morphologically distinct groups: young larval, paedomorphic, young terrestrial or old terrestrial, and measured the body size index (BSI) of fossils in each group and time period.

The team found that paedomorphic individuals - sexually mature, yet still aquatic and retaining larval characteristics - were much smaller than terrestrial adult individuals, during the Medieval Warm Period (MWP). The authors claim that this is eveidence for a response to warm and dry climate conditions, which allowed a terrestrial ectotherm to flourish. They conclude that the fossil record of the Tiger Salamander reflects known climatic conditions during the MWP, a time period characterised by a warm and dry climate that occurred approximately 1150 to 650 years ago.

Based on these findings, the authors speculate that the future warmer and drier climate predicted for the Yellowstone region is likely to create less permanent aquatic environments and select against aquatic paedomorphic individuals. This scenario would decrease the vertebrate biomass and alter the food web structure in the aquatic system.

Juliette Savin | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>