Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into causes and consequences of climate change

08.09.2005


An oxygen-free ocean from bottom to surface is probably the worst scenario that marine higher life can experience. Are processes and feedbacks linking the atmosphere to the deep ocean capable to cause a rapid change from an oxygen-rich to an oxygen-free deep ocean? And what are the consequences for the global carbon cycle that ultimately drive marine and terrestrial ecosystems and climate variation?



These are fundamental and burning questions on the society’s agenda. Hurricane Katrina and other natural catastrophes in recent years have shown how vulnerable mankind is in the face of nature. Professor Tom Wagner led a cross-disciplinary study of geological records combined with climate modeling to shed new light on the mechanisms and processes that led to repetitive rapid climatic change with major impact on the ocean during past greenhouse conditions.

By analysing sediments laid down on the ocean floor about 85m years ago in the Cretaceous, the research team found evidence that Cretaceous greenhouse climate was highly variable and repeatedly resulted in major changes in ocean chemistry and deep circulation causing disastrous consequences for marine ecosystems. These extreme conditions fostered massive burial of dead organic matter from marine species, such as algae and plankton, at the sea floor, leading to the formation of distinct sediments, "marine black shale", also well known as the world’s primary source for oil and gas.


Professor Wagner and colleagues uncovered evidence of the mechanisms that drove rapid and repetitive climate change by studying the quantity and content of proxy parameters in black shale in a core of sedimentary rock drilled out of the ocean bed, off Africa’s Ivory Coast, and comparing these results with data from a global climate model.

The model data were used to quantify the freshwater run-off from tropical Africa into the equatorial Atlantic, where the core has been drilled, and to specify the role of orbital configuration and the water cycle on climate and oceanographic variation. With these data, it was possible to explain the formation of the sedimentary succession of black shale and carbonate-rich sediments, indicating alternation between oxygen-depleted and oxygen-rich conditions in the deep ocean. All life other than simple organisms like bacteria would have been seriously depleted in the deeper ocean as oxygen became progressively scarce. On land, the climate variability would cause strong regional contrasts, with widespread deserts at mid-latitudes and extremely humid areas in the tropics.

Processes in the atmosphere driven by cyclic changes in the amount of energy from the sun entering the top of the atmosphere (insolation) have been identified to be the cause for the observed dramatic changes in ocean chemistry that resulted in the formation of black shale. This contributes to the current discussion on whether the atmosphere drives the oceans or vice-versa.

Higher rainfall would have caused increased amounts of fresh water running off the land, carrying large quantities of nutrients into the oceans, resulting in an increase in marine productivity and supporting oxygen depletion and a change in circulation patterns in the deep ocean.
Climate modeling identified that specific periods of extremely high river discharge occurred during maxima in seasonal contrasts when the northern equinox (when the sun is directly over the earth’s equator) coincided with perihelon (when the earth passes closest to the sun). It was only during this specific orbital configuration that freshwater run-off exceeded a certain threshold, finally to result in a rapid change to ocean anoxia.

The findings, reported in Nature, the international weekly journal of science, suggest that variations in the water cycle, once they have exceeded a certain threshold, are capable of inducing major environmental change in the oceans.

The researchers conclude: ’The results of this study demonstrate how sensitively and rapidly tropical marine areas close to continental margins react to even relatively moderate increases in continental freshwater discharge.

’The freshwater threshold required to shift sheltered and semi-enclosed areas of the modern ocean into an anoxic mode are unknown but the progressive emission of greenhouse gases to the modern atmosphere is gradually shifting Earth towards a greenhouse mode with an accelerated hydrological cycle.’

’At present it is hardly possible to estimate where we are on the long-term climate trend but once the freshwater threshold is passed, a substantial impact on biochemical cycling of continental margins may be expected.’
Commenting on the Nature paper, Professor Wagner said that the majority of the world’s population live in coastal areas, which were the most vulnerable to natural catastrophes as recorded in the geological record.

’Understanding the processes and feedbacks controlling carbon and nutrient cycling in the modern world and during past periods of extreme warmth is therefore critical to separate human impact on climate from natural variability and underpins the ability to adapt to future conditions,’ he said.

Professor Wagner, of the Institute for Research on Environment and Sustainability at Newcastle University, England, worked with colleagues from the Universities of Bremen and Cologne and the GEOMAR Leibniz Institute of Marine Sciences at Kiel, in Germany, and the Royal Netherlands Institute for Sea Research (NIOZ) at Texel, Netherlands.

Professor Tom Wagner | alfa
Further information:
http://www.newcastle.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>