Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into causes and consequences of climate change

08.09.2005


An oxygen-free ocean from bottom to surface is probably the worst scenario that marine higher life can experience. Are processes and feedbacks linking the atmosphere to the deep ocean capable to cause a rapid change from an oxygen-rich to an oxygen-free deep ocean? And what are the consequences for the global carbon cycle that ultimately drive marine and terrestrial ecosystems and climate variation?



These are fundamental and burning questions on the society’s agenda. Hurricane Katrina and other natural catastrophes in recent years have shown how vulnerable mankind is in the face of nature. Professor Tom Wagner led a cross-disciplinary study of geological records combined with climate modeling to shed new light on the mechanisms and processes that led to repetitive rapid climatic change with major impact on the ocean during past greenhouse conditions.

By analysing sediments laid down on the ocean floor about 85m years ago in the Cretaceous, the research team found evidence that Cretaceous greenhouse climate was highly variable and repeatedly resulted in major changes in ocean chemistry and deep circulation causing disastrous consequences for marine ecosystems. These extreme conditions fostered massive burial of dead organic matter from marine species, such as algae and plankton, at the sea floor, leading to the formation of distinct sediments, "marine black shale", also well known as the world’s primary source for oil and gas.


Professor Wagner and colleagues uncovered evidence of the mechanisms that drove rapid and repetitive climate change by studying the quantity and content of proxy parameters in black shale in a core of sedimentary rock drilled out of the ocean bed, off Africa’s Ivory Coast, and comparing these results with data from a global climate model.

The model data were used to quantify the freshwater run-off from tropical Africa into the equatorial Atlantic, where the core has been drilled, and to specify the role of orbital configuration and the water cycle on climate and oceanographic variation. With these data, it was possible to explain the formation of the sedimentary succession of black shale and carbonate-rich sediments, indicating alternation between oxygen-depleted and oxygen-rich conditions in the deep ocean. All life other than simple organisms like bacteria would have been seriously depleted in the deeper ocean as oxygen became progressively scarce. On land, the climate variability would cause strong regional contrasts, with widespread deserts at mid-latitudes and extremely humid areas in the tropics.

Processes in the atmosphere driven by cyclic changes in the amount of energy from the sun entering the top of the atmosphere (insolation) have been identified to be the cause for the observed dramatic changes in ocean chemistry that resulted in the formation of black shale. This contributes to the current discussion on whether the atmosphere drives the oceans or vice-versa.

Higher rainfall would have caused increased amounts of fresh water running off the land, carrying large quantities of nutrients into the oceans, resulting in an increase in marine productivity and supporting oxygen depletion and a change in circulation patterns in the deep ocean.
Climate modeling identified that specific periods of extremely high river discharge occurred during maxima in seasonal contrasts when the northern equinox (when the sun is directly over the earth’s equator) coincided with perihelon (when the earth passes closest to the sun). It was only during this specific orbital configuration that freshwater run-off exceeded a certain threshold, finally to result in a rapid change to ocean anoxia.

The findings, reported in Nature, the international weekly journal of science, suggest that variations in the water cycle, once they have exceeded a certain threshold, are capable of inducing major environmental change in the oceans.

The researchers conclude: ’The results of this study demonstrate how sensitively and rapidly tropical marine areas close to continental margins react to even relatively moderate increases in continental freshwater discharge.

’The freshwater threshold required to shift sheltered and semi-enclosed areas of the modern ocean into an anoxic mode are unknown but the progressive emission of greenhouse gases to the modern atmosphere is gradually shifting Earth towards a greenhouse mode with an accelerated hydrological cycle.’

’At present it is hardly possible to estimate where we are on the long-term climate trend but once the freshwater threshold is passed, a substantial impact on biochemical cycling of continental margins may be expected.’
Commenting on the Nature paper, Professor Wagner said that the majority of the world’s population live in coastal areas, which were the most vulnerable to natural catastrophes as recorded in the geological record.

’Understanding the processes and feedbacks controlling carbon and nutrient cycling in the modern world and during past periods of extreme warmth is therefore critical to separate human impact on climate from natural variability and underpins the ability to adapt to future conditions,’ he said.

Professor Wagner, of the Institute for Research on Environment and Sustainability at Newcastle University, England, worked with colleagues from the Universities of Bremen and Cologne and the GEOMAR Leibniz Institute of Marine Sciences at Kiel, in Germany, and the Royal Netherlands Institute for Sea Research (NIOZ) at Texel, Netherlands.

Professor Tom Wagner | alfa
Further information:
http://www.newcastle.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>