Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Roadways and Parking Lots Threaten Freshwater Quality in the Northeastern U.S.


There are 2.6 million miles of paved roads in the United States, and new roads are being constructed daily. When parking lots and driveways are factored in, there is already enough blacktopped surface in the U.S. to cover the entire state of Ohio. Paved roads and parking spaces come in handy for our nation’s drivers, but they also come with a serious unforeseen cost— the degradation of our nation’s freshwater ecosystems.

In a recent Proceedings of the National Academy of Sciences paper, Drs. Sujay S. Kaushal, Peter M. Groffman, and Gene E. Likens of the Institute of Ecosystem Studies, with colleagues, detail how roadways and deicers are compromising the health of northeastern waters, making them inhospitable to wildlife and compromising drinking water supplies. Their insights were made possible by long-term data recorded by the Institute of Ecosystem Studies, the Hubbard Brook Ecosystem Study, the Baltimore Ecosystem Study, the U.S. Geological Survey, and the City of Baltimore.

By looking at records of chloride concentration in a range of northeastern waterways— from urban and suburban sources in New York’s Hudson Valley and Baltimore County, Maryland to rural streams in the White Mountains of New Hampshire— the researchers concluded that freshwater salinity has been increasing at an alarming rate over the past 30 years. In the Baltimore study area, there was a strong relationship between impervious surface coverage (i.e. roads and parking lots) and chloride concentration. Road salt was cited as an important source of chloride pollution.

Dr. Kaushal, a Post Doctoral Associate at the Institute of Ecosystem Studies when the research was conducted, comments, "There is a direct connection between the construction of new roadways and parking lots and the quality of our fresh water. In particular, we haven’t paid attention to how rapid changes in human development and deicer use impact the watersheds that supply our region’s drinking water." Adding that, "We are hardening the watershed and feeding it a high sodium diet that is detrimental to the health of aquatic ecosystems."

The changes observed were not subtle. By accumulating in ground water and aquifers, road salt was linked to year-round increases in freshwater salinity. In New York and Maryland, freshwater salinity reached levels equivalent to 25% of the concentration of seawater. In developed areas of Baltimore, chloride concentrations were already high enough to induce mortality in aquatic animals and alter wetland plant composition. Even in rural New Hampshire, where road density is low, a number of streams were as saline as the tidal waters of the Hudson River estuary.

Dr. Groffman, of the Institute of Ecosystem Studies, notes, "It is surprising and significant that the long-term record shows that salinity concentrations are going up, even in places where the amount of salt applied has not increased. Concentrations are high in the summer, not just in the winter when salt is applied to melt snow, suggesting that salt is accumulating in the environment. The salinity increases we observed in rural areas, with minimal road coverage, indicate that the urban/suburban effect on stream chloride is prevalent over large land areas."

If salinity levels continue to rise in the northeastern U.S., Kaushal and colleagues warn that within the next century many freshwater sources will be toxic to aquatic life and unfit for human consumption. Reversing the problem involves reducing the creation of new roads and subsequent use of deicers. Despite being a major aquatic pollutant, road salt is not currently regulated as a freshwater contaminant.

Lori M. Quillen | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>