Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freshwater and Saltwater Interactions in Coastal Groundwater Systems May Provide Clues to Chemicals Entering Coastal Waters

05.09.2005


Scientists have recently recognized an imbalance in the flow of salty groundwater into the coastal ocean: considerable saltwater discharge into the ocean has been observed, but little or no return flow has been seen. Now it appears that the timing of the discharge may be key to the health of our coastal waters.



New measurements and models suggest that seasonal changes in the water table may provide clues to how water is exchanged and why the largest discharge occurs during the summer, when the coastal ocean may be most vulnerable to the dissolved chemicals in the groundwater because biological activity is at its highest and river inflow at its lowest.

Fresh and salty groundwater flows into coastal waters as submarine groundwater discharge and is an important source of nutrients, contaminants and trace elements to the coastal ocean. Recent research has revealed that a large portion of submarine groundwater discharge is saline water. Although this water was once ocean water, the mechanism controlling its flow into and out of the sediments has not been previously determined. Using seepage meters and geochemical tracers, scientists have directly measured and inferred groundwater flow from land to sea. But they have not previously been able to observe the opposite, large-scale flow or intrusion of seawater into coastal aquifers to balance this exchange.


In a paper published August 25, 2005 in Nature, scientists from the Massachusetts Institute of Technology (MIT) and Woods Hole Oceanographic Institution (WHOI) made both direct and indirect measurements of flows back and forth at Waquoit Bay, Massachusetts at various seasons of the year and compared those results with a general model of a coastal groundwater system. Their findings reveal a lag in the inflows and outflows related to seasonal changes in the water table.

Study co-author Ann Mulligan of the WHOI Marine Policy Center says seawater is drawn into aquifers as the freshwater-saltwater interface or boundary moves landward during winter. The water discharges back into coastal waters as the boundary moves seaward in summer. Since summer is typically associated with higher temperatures and evaporation, saltwater should intrude inland rather than discharge at the coast. However, the numerical model reveals that there may be a time lag of several months between precipitation, groundwater recharge, and associated impacts on saltwater flowing into or out of the aquifer.

“We looked at several mechanisms other than seasonal exchange that could drive saltwater circulation, including tides, wave run-up on the beach, and entrainment or trapping of saltwater into fresh,” Mulligan said. “ But each of these flows balanced over a tidal cycle and occurs in a well-defined relatively small area, and could not account for the large discharge we observed during summer in Waquoit Bay.“

The study was conducted at the Waquoit Bay National Estuarine Research Reserve in Falmouth, Massachusetts and supported by the National Science Foundation.

The authors say the global extent of seasonal exchange of freshwater and saltwater is unknown but could be an important factor in transporting nutrients and contaminants trapped in sediments into coastal waters. Because the chemistry of coastal waters is affected, it is important to understand the link between the seasonal hydrologic cycle on land and the saline groundwater system in coastal aquifers. Now that a major driving mechanism of saline water flow has been determined, important follow-up studies will look at the chemical content of the inflowing and outflowing water over a yearly cycle. Most previous studies have looked at chemical loading from groundwater over short time-periods, but this study shows that a major process is occurring on a yearly cycle.

“The impact on coastal chemistry could be enormous,” Mulligan says. “Along the U.S. east coast the greatest saltwater discharge may occur in summer, when biological activity is at its highest and river inflow at its lowest. The input of nutrients at certain times of the year may be key to the health of our coastal waters.”

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>