Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Puffins dig their own graves

01.09.2005


Puffins on the island of Craigleith, in Scotland, are being forced out by giant alien plants. Puffin numbers have halved in recent years as the invasive tree mallow took over the island, growing in the manure-rich burrow entrances and preventing the puffins from breeding.



Although Atlantic puffin numbers are increasing rapidly across most of the east coast of Scotland, at Craigleith near North Berwick the reverse has been the case. The decline has been blamed on the rapid expansion of the tree mallow which grows in dense stands up to 3m tall and prevents the puffins from accessing their burrows. The number of burrows in which puffin pairs breed reduced from 28,000 in 1999 to 14,000 in 2003.

Scientists are now asking people for help, as part of a new three-year study funded by the Scottish Executive. The researchers need to find out why the tree mallow has suddenly expanded and develop practical approaches to control its growth.


Project leader Dr René van der Wal from the Centre for Ecology & Hydrology in Banchory said “We need help to sort this problem out. The tree mallow expansion is probably due to recent mild winters and the efforts of the puffins which provide great conditions for tree mallow to grow. However we have very little information and need to know more, fast.”

He added, “People can help us in three ways. First, they can visit our new tree mallow website to find out more about the problem and how to identify the alien plant. Second, we’d like them to both alert us and send in any photos, new and old, of coastal areas where tree mallow has been seen growing. Third, we would really like some local schools to get involved by planting tree mallow seedlings outside their classrooms and letting us know how they grow as the weather changes. We shall, of course, ensure that no seedlings escape.”

Scottish Natural Heritage and the Scottish Seabird Centre at North Berwick are also involved in the project. Lillian Kelly from the Seabird Centre said “We’re really excited about this new project. It provides us with a great opportunity to run school activity days focussing on how global climate change is having obvious local impacts, for example on the puffins as tree mallow plants take hold. Birdwatchers come to Scotland from round the world to see our seabirds and we must conserve this vitally important tourist resource.”

The puffins themselves assist in the establishment of tree mallow, which needs a fertile soil to establish itself. Soils of seabird islands are nitrogen rich as a result of the guano and ammonia from seabirds faeces. Tree mallow seedlings grow predominantly in gaps in the vegetation that are created by puffins through their digging, or in areas that puffins frequently use.

Tree mallow is believed to have escaped into the wild in East Scotland after being planted in coastal gardens. In particular, lighthouse keepers grew the plants and used the large woolly leaves as an effective compress to cover wounds. Whereas tree mallow has been on the Bass Rock for more than three centuries, the species has rapidly expanded on other islands during the last fifteen years in the Firth of Forth region. Scientists do not know why this is the case. Hopefully this mystery will be resolved within this project.

Barnaby Smith | alfa
Further information:
http://www.ceh.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>