Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat sees whirling Hurricane Katrina from ocean waves to cloud tops

30.08.2005


ESA’s multi-sensor Envisat satellite has gathered a unique view of Hurricane Katrina in the Gulf of Mexico. While an optical image shows characteristic spiralling cloud patterns, a simultaneous radar observation pierces through the clouds to show how Katrina’s 250-kilometre-an-hour an hour winds scour the sea surface.



Envisat simultaneously acquired these images at 1550 UTC (1150 US Eastern Daylight Saving Time) on 28 August, with its Medium Resolution Imaging Spectrometer (MERIS) and Advanced Synthetic Aperture Radar (ASAR).

At the time of acquisition Hurricane Katrina was a maximum Category Five on the Saffir-Simpson scale. Further ESA acquisitions are being prioritised because the International Charter on Space and Major Disasters has been activated.


The eye of the hurricane is seen clearly in both images, with the wall of the eye clearly visible in the MERIS image, the area of the hurricane where the fastest winds and highest rainfall is found.

The ASAR instrument works by recording signal backscatter based on surface roughness: the wind-free storm centre – seen enclosed within a dark ring feature measuring approximately 60 kilometres across - shows up darker because the waters here are hardly rippled by comparison to the sea around it.

Hurricane Katrina, which formed in the Bahamas in mid-August, struck South Florida on 25 August, killing nine people and leaving a million more without electricity. It is poised to strike coastal Louisiana and New Orleans. Hurricane-strength winds of at least 119 kilometres per hour currently extend 136 kilometres from its centre.

Katrina has today dropped from a maximum Category Five to a Category Four storm on the Saffir-Simpson scale, but forecasters warn it could again grow in intensity having made landfall.

With serious flooding anticipated in the hurricane’s wake as well as direct storm damage, the US Geological Service (USGS) activated the International Charter on Space and Major Disasters on 27 August.

ESA is a founding member of the Charter, which represents a joint effort by global space agencies to put resources at the service of rescue authorities responding to major natural or man-made disasters. To date the Charter has been activated more than 80 times.

Observing hurricanes

A hurricane is basically a large, powerful storm centred around a zone of extreme low pressure. Strong low-level surface winds and bands of intense precipitation combine strong updrafts and outflows of moist air at higher altitudes, with energy released as rainy thunderstorms.

Envisat carries both optical and radar instruments, enabling researchers to observe high-atmosphere cloud structure and pressure in the visible and infrared spectrum, while at the same time using radar backscatter to measure the roughness of the sea surface and so derive the wind fields just above it.

Those winds converging on the low-pressure eye of the storm are what ultimately determine the spiralling cloud patterns that are characteristic of a hurricane.

Additionally Envisat instruments can potentially be used to take the temperature of the warm ocean waters that power storms during the annual Atlantic hurricane season, or detect sea height anomalies related to warm upper ocean features known as ’loop currents’.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMB41A5QCE_environment_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>