Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New climate modelling computer provides more reliable risk analyses

24.08.2005


Enhanced computing capability will make it possible to gain new insights on climate change. On Tuesday, August 23, the climate modelling computer Tornado was inaugurated by Lena Sommestad, who is Environment Minister in Sweden.



Current research reports on climatic evolution unanimously concur that global temperature and precipitation are in a state of change. The extent global warming will reach in the future depends largely on the quantity of future carbon dioxide emission, but scientists need to explore several other uncertainty factors. For instance, what regions can be expected to be bear the brunt of climatic change, and just how commonplace will devastating storms, rain torrents and extreme heat waves be in the future.

A powerful new computer is now available for highly detailed climate studies by Swedish research teams at Rossby Centre (a unit of the Swedish Meteorological and Hydrological Institute, SMHI) and the Department of Meteorology at Stockholm University. This climate modelling computer, designed and hosted by the National Supercomputer Centre at Linköping University, is dedicated to the development of climate scenarios and the assessment of how climate change might influence regional conditions. Especially the Arctic climate and the Baltic Sea will be focal points for study.


Environment Minister Lena Sommestad officially launched the climate modelling computer Tornado on Tuesday August 23 at Linköping University. She stressed the significance of access to upgraded computing power. “Concurrent with our task to reduce greenhouse gases, we must seek knowledge about the effects of climate change, on both global and local levels. This supercomputer can provide us with much needed material for political decision-making.”

A key speaker at the inauguration ceremony was Professor Emeritus Bert Bolin who previously served at Stockholm University. He pointed out, “This expansion of our computing resources will enable Swedish scientists to participate more dynamically in the ongoing European collaboration that is investigating climatic variability. The most significant result of this tool will be more reliable risk analyses of anticipated climatic development.”

Director-General Maria Ågren at the Swedish Meteorological and Hydrological Institute emphasized the importance of upgraded computer capacity. “This enhanced computing capability is a giant step forward. Tornado will not only enable more calculations to be made at the same time, but these will be more detailed and cover a greater geographical area. Moreover, we will be better able to understand climate development in now unpredictable areas.

Tornado is funded by the Knut and Alice Wallenberg Foundation, a Swedish research and educational endowment fund.

Tornado will make previous climate computer resources available. These will continue to be used to develop numerical models and regional scenarios for the scientific community of Scandinavia and the rest of Europe.

Åke Hjelm | alfa
Further information:
http://www.smhi.se/en/index.htm

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>