Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bat-bot boosts sonar research

22.08.2005


A robotic bat head that can emit and detect ultrasound in the band of frequencies used by the world’s bats will give echolocation research a huge boost.



The Bat-Bot, developed by IST project CIRCE, can also wriggle its ears, a technique often used by bats to modulate the characteristics of the echo.

CIRCE developed the Bat-Bot to closely mimic the amazing echolocation skills of bats and to act as a tool for further research in echolocation.


"Sonar in water is a mature field, but sonar in air is far less advanced," says Dr Herbert Peremans, who is head of the Active Perception Lab the University of Antwerp and CIRCE coordinator.

"Whenever a robot team wants to build an autonomous robot they look at sonar first, but they quickly run into problems due to the simple nature of commercial sonar systems, and switch to vision or laser-ranging. We hope that the research we can now do with the robotic bat will lead to more sophisticated sonar systems being used for robot navigation and other applications," he says.

One of those potential applications could be identifying plants using echolocation. During development of the Bat-Bot CIRCE research validated that different plants give off unique echo signatures.

"We tested several plant species and they could all be reliably identified by echolocation, proving that in principle the technique could work for plant identification. But further research into the technique is needed," says Peremans.

While building the robotic head was the primary aim of CIRCE, the group generated many useful results along the way. One project partner developed a broadband transducer that could both convert acoustical energy to electrical energy and electrical to acoustical across the 20 to 200 kHz spectrum.

"There are about 700 echolocating bat species, and they use a wide range of frequencies. We needed a single device that could handle that entire range. The transducer developed by one of the partners can do that and has some additional advantages making it a promising technology for further commercialisation," he says.

The project also completed CT scans on about 20 bat species, demonstrating that the ear shape of bats varies enormously, and heavily influences their performance. This knowledge could also be used to enhance the performance of existing sonar systems.

"We’re the first to build a high resolution computer model of bat ears, which act as antennae. It’s a result we’re very proud of and so we’ve manufactured a series of simplified nylon ears (rapid prototyping tool) which we can now begin to characterise by investigating how their shape influences their sound reception," says Peremans.

The Bat-Bot will now feature in a number of new research projects, such as the EU project CILIA, due to start in September, which will examine how sets of tiny hairs on insects, fish and in the cochlea of mammals like bats and humans can be used to extract information on the organism’s environment.

"We’re interested in further exploring active sonar sensing with the device, and we hope that other researchers and teams will get in touch with us to collaborate on new projects," says Peremans.

It’s impossible to guess at what potential results the Bat-Bot might generate, but CIRCE’s work with plants and bat ear design demonstrate that sonar in air has potentially many applications, not least in the development of functional sonar navigation for robots.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>