Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bat-bot boosts sonar research

22.08.2005


A robotic bat head that can emit and detect ultrasound in the band of frequencies used by the world’s bats will give echolocation research a huge boost.



The Bat-Bot, developed by IST project CIRCE, can also wriggle its ears, a technique often used by bats to modulate the characteristics of the echo.

CIRCE developed the Bat-Bot to closely mimic the amazing echolocation skills of bats and to act as a tool for further research in echolocation.


"Sonar in water is a mature field, but sonar in air is far less advanced," says Dr Herbert Peremans, who is head of the Active Perception Lab the University of Antwerp and CIRCE coordinator.

"Whenever a robot team wants to build an autonomous robot they look at sonar first, but they quickly run into problems due to the simple nature of commercial sonar systems, and switch to vision or laser-ranging. We hope that the research we can now do with the robotic bat will lead to more sophisticated sonar systems being used for robot navigation and other applications," he says.

One of those potential applications could be identifying plants using echolocation. During development of the Bat-Bot CIRCE research validated that different plants give off unique echo signatures.

"We tested several plant species and they could all be reliably identified by echolocation, proving that in principle the technique could work for plant identification. But further research into the technique is needed," says Peremans.

While building the robotic head was the primary aim of CIRCE, the group generated many useful results along the way. One project partner developed a broadband transducer that could both convert acoustical energy to electrical energy and electrical to acoustical across the 20 to 200 kHz spectrum.

"There are about 700 echolocating bat species, and they use a wide range of frequencies. We needed a single device that could handle that entire range. The transducer developed by one of the partners can do that and has some additional advantages making it a promising technology for further commercialisation," he says.

The project also completed CT scans on about 20 bat species, demonstrating that the ear shape of bats varies enormously, and heavily influences their performance. This knowledge could also be used to enhance the performance of existing sonar systems.

"We’re the first to build a high resolution computer model of bat ears, which act as antennae. It’s a result we’re very proud of and so we’ve manufactured a series of simplified nylon ears (rapid prototyping tool) which we can now begin to characterise by investigating how their shape influences their sound reception," says Peremans.

The Bat-Bot will now feature in a number of new research projects, such as the EU project CILIA, due to start in September, which will examine how sets of tiny hairs on insects, fish and in the cochlea of mammals like bats and humans can be used to extract information on the organism’s environment.

"We’re interested in further exploring active sonar sensing with the device, and we hope that other researchers and teams will get in touch with us to collaborate on new projects," says Peremans.

It’s impossible to guess at what potential results the Bat-Bot might generate, but CIRCE’s work with plants and bat ear design demonstrate that sonar in air has potentially many applications, not least in the development of functional sonar navigation for robots.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Ecology, The Environment and Conservation:

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht From waste to resource – how can we turn garbage into gold?
27.04.2016 | DLR Projektträger

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>