Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming most evident at high latitudes, but greatest impact will be in tropics

15.08.2005


The impact of global warming has become obvious in high latitude regions, including Alaska, Siberia and the Arctic, where melting ice and softening tundra are causing profound changes. But, contrary to popular belief, the most serious impact in the next century likely will be in the tropics, says a group of researchers headed by a University of Washington ecologist.



Scientists have noted warming at higher latitudes that already appears to be causing some flowers to bloom earlier than usual and seems to be altering some wildlife migration and hibernation patterns.

"You see this and you think the higher latitudes are really being hammered by climate change. We are arguing that this might not be true," said Joshua Tewksbury, a UW assistant professor of biology. "To predict the impact of climate change, we need to know the amount of change and how organisms are able to tolerate that change. Previous research has focused on change alone and ignored tolerance."


The more dramatic impact could actually be in the moist tropics, despite modeling that indicates temperatures there will warm just 2 or 3 degrees by 2100 compared with 6 degrees or more at higher latitudes, Tewksbury said. That is because organisms in the tropics normally do not experience much temperature variation because there is very little seasonality, so even small temperature shifts can have a much larger impact than similar shifts in regions with more seasonal climates.

"Temperatures in the tropics don’t fluctuate that much, so the relatively small temperature shifts predicted by climate change models will be very large in relation to what organisms are adapted to tolerate," he said. "It’s only going to be perhaps a 2-degree change, but in many tropical areas organisms have never experienced a 2-degree change."

By contrast, higher latitudes can have vast temperature fluctuations from hot summers to cold winters, and so plants and animals already are adapted to a wide range of temperatures. For example, it is not unusual for temperatures in Alaska’s interior to reach far below zero in the winter and into the mid-70s during the summer. Flowers that bloom earlier and animals that change their hibernation or migration patterns in response to warming temperatures could be an illustration of the adaptability of life at higher latitudes.

Tewksbury’s group collected studies that examined several closely related populations of plants, animals and insects to determine how the populations tolerated changing temperatures. Then they developed models based on the average between a region’s highest temperature in the warmest month of the year and lowest temperature in the coldest month and programmed the region’s expected temperature changes because of climate warming.

"What we find is that organisms in the tropics have very low tolerance," he said. "The evidence suggests that the range of temperatures an organism experiences dictates its tolerance to changing climate, or defines the temperature envelope in which it can live."

Tewksbury will present the findings Friday at the Ecological Society of America’s annual meeting in Montreal. Collaborators include Raymond Huey, a UW biology professor, and UW biology doctoral students David Haak, Paul Martin and Kimberly Sheldon, who is lead author for the work.

Tewksbury noted that while direct estimates of tolerance are not available for all organisms or for all regions of the globe, there is good information on the degree of seasonal temperature fluctuation worldwide. That seasonality, he said, can be used to predict how well organisms will tolerate climate change.

The findings also imply that warming could forever alter life on Earth because the vast majority of species live in the tropics and many could be driven to extinction because of their inability to adapt.

"Evolution only happens if you don’t go extinct. From an evolutionary standpoint, a model of the climate change impact reflects a race between adaptation and extinction," Tewksbury said. "Climate models project 6 degree temperature shifts in temperate zones during the next 90 years and 2 to 3 degrees in equatorial climates. That is such a rapid change that longer-lived organisms such as trees will have very little opportunity for adaptation – survival might be a matter of tolerance alone. In contrast, for an insect that has three generations a year the evolution of tolerance might play a larger role.

"It’s kind of a bleak outlook for tropical organisms, and it shows how the lack of seasonal temperature variation can magnify the impact of climate warming."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>