Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the horizon: a “rinse” for washing machines that dries clothes

10.08.2005


Think of it as a kind of chemical clothes wringer.



University of Florida engineers have developed a compound that forces clothes in the washer to shed 20 percent more water during the spin cycle than in normal conditions. The result: A load of clothes dries faster in the dryer, saving energy — and reducing homeowners’ electricity bills and time spent in the laundry room.

“We feel it’s very cost-effective research and convenient for consumers,” said Dinesh Shah, a professor of chemical engineering and director of the UF Center for Surface Science and Engineering.


Shah and Daniel Carter, a doctoral student in chemical engineering, will publish their second article about their research this month in Langmuir, a surface science journal. UF has applied for a patent on the research, which was funded with $200,000 from Procter & Gamble, a major manufacturer of laundry detergent and related products.

More than 56 percent of Americans own electric dryers, with a typical dryer handling 300 loads per year, Carter said. With the average load requiring from 2.7 to 3 kilowatt hours of electricity, that means drying clothes equates to 5 percent of total residential electricity consumption, costing $2.6 billion annually, Carter said.

A conservative 10 percent reduction in drying times would save consumers $266 million annually. But Shah and Carter say they can do better than that.

Their invention: A water-shedding compound created from a mix of common detergents and fabric softeners.

Carter and Shah said the researchers’ key insight was that the spaces between tiny fibers in the weave of fabrics comprise minute tubes, or capillaries, which retain water due to surface tension. It’s the same phenomenon that causes a submerged straw to hold water when covered at the other end and lifted out of the surface, Carter said.

The researchers reasoned that reducing this surface tension would reduce the water retained by fabric. They first tested this idea using finger-sized copper containers dotted with drain holes. Filled with fabric and water and placed in a centrifuge, the containers mimicked the conditions of spin cycling washing machines – except that the water loss and fabric retention could be easily measured.

When the researchers discovered that some compounds apparently increased water loss, they expanded their experiments to bigger fabrics and a real washer and dryer. The dryer sits in a crowded lab on a scale, allowing Carter to compare different wet loads by weight to their total drying times.

Their experiments revealed that one ratio of a common detergent and fabric softener – five parts detergent, one part fabric softener – added before the spin cycle forced the clothes to shed 20 percent more water than untreated clothes. The clothes then dried 20 percent faster.

Daniel Carter | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>