Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reclaimed Wastewater: An Idea that Could Soak in


As water becomes ever more scarce, quenching thirsty crops with wastewater may be OK if done right, researchers here say.

"Managing reclaimed water by pretreating before using it to irrigate, monitoring for viruses, choosing correct crops and periodically leaching the soils should be successful and safe," said Dr. George Di Giovanni, Texas Agricultural Experiment Station environmental microbiologist.

Di Giovanni and his colleagues studied the movement of viruses carried in water through sandy and clay soils on which spinach was planted. They were interested in how long viruses in the water remain in the soil, how they move through the soil and whether they could harm humans or livestock. Their findings have been accepted for an article in Agriculture Ecosystems and Environment journal.

"No bacteriophage (virus) was found on the spinach leaves, regardless of the type of soil they grew in," Di Giovanni said.

The tests were done in a greenhouse in soil collected from the region. Two types of water were tested – a blend of reclaimed water and filtered wastewater laced with bacteriophage, which is a type of virus that infects only bacteria. A bacteriophage is often used in studies as a substitute for human viruses, Di Giovanni said. The water was dripped under the soil surface in plastic columns built for the test.

The research found that bacteriophage could be found on the crusty surfaces of both soil types and remained in the clay soil for about a month after irrigation ended.

"That suggests that human viruses could also linger in the soil," Di Giovanni said. "Reclaimed water must be effectively treated to remove or kill pathogens before use, regardless of irrigation method."

Finding such uses for reclaimed water is vital, said Experiment Station wastewater researcher Dr. Naomi Assadian.

"Wastewater reuse for agriculture and managed landscapes will be necessary to meet growing water demands and conserve current drinking supplies in arid regions such as the upper Rio Grande River area," Assadian said. "But alternative supplies, such as treated municipal wastewater, often contain microbial and chemical elements that may affect public health and/or the environment."

Assadian and Di Giovanni collaborated on the project with Dr. Jaime Iglesias, Texas Cooperative Extension agent in El Paso County; Dr. Juan Enciso, Experiment Station agriculture engineer in Weslaco; and Dr. William Lindemann, New Mexico State University agronomist.

The researchers said a "closed system," as in their method of using underground pipes to apply water to the crop, limited exposure to the soil surface and edible parts of the crop, a positive finding as scientists continue to explore how to reuse water.

While their study showed a feasible use of wastewater, the researchers said similar trials would need to be conducted at each site where such a system is considered. That’s because variations in soil might yield different results, they said.

The study was funded by the Texas Department of Agriculture, U.S. Department of Agriculture and the Experiment Station.

Kathleen Phillips | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>