Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reclaimed Wastewater: An Idea that Could Soak in

11.08.2005


As water becomes ever more scarce, quenching thirsty crops with wastewater may be OK if done right, researchers here say.

"Managing reclaimed water by pretreating before using it to irrigate, monitoring for viruses, choosing correct crops and periodically leaching the soils should be successful and safe," said Dr. George Di Giovanni, Texas Agricultural Experiment Station environmental microbiologist.

Di Giovanni and his colleagues studied the movement of viruses carried in water through sandy and clay soils on which spinach was planted. They were interested in how long viruses in the water remain in the soil, how they move through the soil and whether they could harm humans or livestock. Their findings have been accepted for an article in Agriculture Ecosystems and Environment journal.



"No bacteriophage (virus) was found on the spinach leaves, regardless of the type of soil they grew in," Di Giovanni said.

The tests were done in a greenhouse in soil collected from the region. Two types of water were tested – a blend of reclaimed water and filtered wastewater laced with bacteriophage, which is a type of virus that infects only bacteria. A bacteriophage is often used in studies as a substitute for human viruses, Di Giovanni said. The water was dripped under the soil surface in plastic columns built for the test.

The research found that bacteriophage could be found on the crusty surfaces of both soil types and remained in the clay soil for about a month after irrigation ended.

"That suggests that human viruses could also linger in the soil," Di Giovanni said. "Reclaimed water must be effectively treated to remove or kill pathogens before use, regardless of irrigation method."

Finding such uses for reclaimed water is vital, said Experiment Station wastewater researcher Dr. Naomi Assadian.

"Wastewater reuse for agriculture and managed landscapes will be necessary to meet growing water demands and conserve current drinking supplies in arid regions such as the upper Rio Grande River area," Assadian said. "But alternative supplies, such as treated municipal wastewater, often contain microbial and chemical elements that may affect public health and/or the environment."

Assadian and Di Giovanni collaborated on the project with Dr. Jaime Iglesias, Texas Cooperative Extension agent in El Paso County; Dr. Juan Enciso, Experiment Station agriculture engineer in Weslaco; and Dr. William Lindemann, New Mexico State University agronomist.

The researchers said a "closed system," as in their method of using underground pipes to apply water to the crop, limited exposure to the soil surface and edible parts of the crop, a positive finding as scientists continue to explore how to reuse water.

While their study showed a feasible use of wastewater, the researchers said similar trials would need to be conducted at each site where such a system is considered. That’s because variations in soil might yield different results, they said.

The study was funded by the Texas Department of Agriculture, U.S. Department of Agriculture and the Experiment Station.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>