Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study yields mixed results on potential for pine trees to store extra carbon dioxide

09.08.2005


Southern pines appear to grow and conserve water somewhat better in the carbon-dioxide-enriched atmosphere expected by mid-century, a Duke University study has found. However, any growth spurts appear to diminish over time, due at least in part to the kind of hot and dry weather that likely may become more common in the future. Thus, the researchers concluded, enhanced growth of pines may not constitute a long-term sink for human-produced carbon dioxide which might ameliorate global warming.



These findings of a growth ring and wood chemistry study will be described by Duke graduate student Ashley Ballantyne at 9 a.m. Eastern Time on Tuesday, Aug. 9, 2005, during the Ecological Society of America’s 2005 national meeting in Montreal.

Ballantyne, a fourth-year doctoral student in paleoclimatology at Duke’s Nicholas School of the Environment and Earth Sciences, did his study with research associate Jeffrey Pippen at the Free-Air Carbon Dioxide Enrichment (FACE) experiment http://face.env.duke.edu/main.cfm.


At the FACE site in Duke Forest, near the university campus, stands of loblolly pines and other tree species are receiving extra CO2 through tower-borne valves under otherwise natural conditions. Results from the enriched trees are compared with those in matched controlled plots not treated with enhanced carbon dioxide.

The FACE experiment is designed to emulate the atmospheric environment that plants will be subjected to if CO2 levels continue to increase as expected due to human activities such as fossil fuel burning. Ballantyne’s and Pippen’s work was funded by the United States Department of Energy.

Ballantyne said he and Pippen evaluated the pine trees’ response to higher-than-normal CO2 levels by measuring annual growth rings in cores extracted from treated and control trees.

Their analysis revealed that pines under elevated CO2 levels experienced 25 percent extra growth in 1999, and a lower 17 percent and 21 percent boost, respectively, during the two previous years. The 1999 level was the maximum measured to date.

Those previous years, 1997 and 1998, "coincided with one of the highest magnitude el Niño events ever recorded," Ballantyne said in an interview. "We suspect el Niño plays some role in regulating soil moisture, probably due to extreme temperatures and changes in seasonal precipitation patterns."

After those most elevated years, enhanced growth in the CO2 began dropping unevenly in a zigzag fashion. In 2000 it was 19 percent. By 2004 it was down to .01 percent. Those years of declining enhancements were marked by "an approximately 15 percent decline in soil moisture during the growth season," he said.

In fact, the uneven year-to-year growth differences seemed more closely related to soil moisture -- the water available for use by the trees -- than to other possible factors. Increased temperatures may cause a decline in soil moisture, thereby suppressing growth, he said.

Other possible factors in growth declines would include the tree stands’ increasing ages, and the relatively low amounts of nitrogen in Duke Forest soils drained of nutrients by previous farming, he said.

The Duke researchers also studied how the gas-enriched trees processed carbon dioxide and water by analyzing cellulose in extracted tree wood samples.

During photosynthesis, carbon is drawn from the atmosphere as carbon dioxide to be incorporated into tree tissue, Ballantyne said. At the same time, water is drawn in from the soil through the roots, and some of that water eventually escapes into the atmosphere. Analyzing the chemistry of cellulose "can tell us the relative amounts of carbon gain versus water loss," he added.

The Duke investigators found that under higher-than-normal carbon dioxide levels "more carbon is being drawn in and less water is being emitted into the atmosphere," Ballantyne said. "In future climates, this might be a way for loblolly pines to deal better with water stress or drought."

Most scientists agree that the growing carbon dioxide levels are trapping enough heat to induce global warming. And loblollies and other fast-growing trees have been suggested as possible "sinks" to lock some of the excess carbon dioxide in long-term storage.

Overall, the Duke researchers’ findings suggest extra carbon dioxide might enhance loblolly water-use efficiency. But the results may provide less reassurance for proponents of loblolly sink, Ballantyne acknowledged.

"A world with double CO2 is undoubtedly going to be warmer," he said. "However predictions for precipitation changes are not as clear, with some climate models predicting dryer conditions and others wetter.

"If we do see dryer conditions, we might expect less carbon to be stored."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu
http://face.env.duke.edu/main.cfm

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>