Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study yields mixed results on potential for pine trees to store extra carbon dioxide

09.08.2005


Southern pines appear to grow and conserve water somewhat better in the carbon-dioxide-enriched atmosphere expected by mid-century, a Duke University study has found. However, any growth spurts appear to diminish over time, due at least in part to the kind of hot and dry weather that likely may become more common in the future. Thus, the researchers concluded, enhanced growth of pines may not constitute a long-term sink for human-produced carbon dioxide which might ameliorate global warming.



These findings of a growth ring and wood chemistry study will be described by Duke graduate student Ashley Ballantyne at 9 a.m. Eastern Time on Tuesday, Aug. 9, 2005, during the Ecological Society of America’s 2005 national meeting in Montreal.

Ballantyne, a fourth-year doctoral student in paleoclimatology at Duke’s Nicholas School of the Environment and Earth Sciences, did his study with research associate Jeffrey Pippen at the Free-Air Carbon Dioxide Enrichment (FACE) experiment http://face.env.duke.edu/main.cfm.


At the FACE site in Duke Forest, near the university campus, stands of loblolly pines and other tree species are receiving extra CO2 through tower-borne valves under otherwise natural conditions. Results from the enriched trees are compared with those in matched controlled plots not treated with enhanced carbon dioxide.

The FACE experiment is designed to emulate the atmospheric environment that plants will be subjected to if CO2 levels continue to increase as expected due to human activities such as fossil fuel burning. Ballantyne’s and Pippen’s work was funded by the United States Department of Energy.

Ballantyne said he and Pippen evaluated the pine trees’ response to higher-than-normal CO2 levels by measuring annual growth rings in cores extracted from treated and control trees.

Their analysis revealed that pines under elevated CO2 levels experienced 25 percent extra growth in 1999, and a lower 17 percent and 21 percent boost, respectively, during the two previous years. The 1999 level was the maximum measured to date.

Those previous years, 1997 and 1998, "coincided with one of the highest magnitude el Niño events ever recorded," Ballantyne said in an interview. "We suspect el Niño plays some role in regulating soil moisture, probably due to extreme temperatures and changes in seasonal precipitation patterns."

After those most elevated years, enhanced growth in the CO2 began dropping unevenly in a zigzag fashion. In 2000 it was 19 percent. By 2004 it was down to .01 percent. Those years of declining enhancements were marked by "an approximately 15 percent decline in soil moisture during the growth season," he said.

In fact, the uneven year-to-year growth differences seemed more closely related to soil moisture -- the water available for use by the trees -- than to other possible factors. Increased temperatures may cause a decline in soil moisture, thereby suppressing growth, he said.

Other possible factors in growth declines would include the tree stands’ increasing ages, and the relatively low amounts of nitrogen in Duke Forest soils drained of nutrients by previous farming, he said.

The Duke researchers also studied how the gas-enriched trees processed carbon dioxide and water by analyzing cellulose in extracted tree wood samples.

During photosynthesis, carbon is drawn from the atmosphere as carbon dioxide to be incorporated into tree tissue, Ballantyne said. At the same time, water is drawn in from the soil through the roots, and some of that water eventually escapes into the atmosphere. Analyzing the chemistry of cellulose "can tell us the relative amounts of carbon gain versus water loss," he added.

The Duke investigators found that under higher-than-normal carbon dioxide levels "more carbon is being drawn in and less water is being emitted into the atmosphere," Ballantyne said. "In future climates, this might be a way for loblolly pines to deal better with water stress or drought."

Most scientists agree that the growing carbon dioxide levels are trapping enough heat to induce global warming. And loblollies and other fast-growing trees have been suggested as possible "sinks" to lock some of the excess carbon dioxide in long-term storage.

Overall, the Duke researchers’ findings suggest extra carbon dioxide might enhance loblolly water-use efficiency. But the results may provide less reassurance for proponents of loblolly sink, Ballantyne acknowledged.

"A world with double CO2 is undoubtedly going to be warmer," he said. "However predictions for precipitation changes are not as clear, with some climate models predicting dryer conditions and others wetter.

"If we do see dryer conditions, we might expect less carbon to be stored."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu
http://face.env.duke.edu/main.cfm

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>