Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Field tested: Grasslands won’t help buffer climate change as carbon dioxide levels rise

09.08.2005


Because grasslands and forests operate in complex feedback loops with both the atmosphere and soil, understanding how ecosystems respond to global changes in climate and element cycling is critical to predicting the range of global environmental changes--and attendant ecosystem responses--likely to occur. In a new study in the premier open access journal PLoS Biology Jeffrey Dukes, Christopher Field, and colleagues treated grassland plots to every possible combination of current or increased levels of four environmental factors--CO2, temperature, precipitation, and nitrogen influx--to simulate likely regional changes over the next 100 years. The results of their long-term experiment reveal that California grasslands, and ecosystems that respond similarly, are not likely to help buffer the rate of climate change by acting as a carbon "sink"--slowing the rise of CO2 levels by storing more carbon in new growth.



The experiments were part of the Jasper Ridge Global Change Experiment (JRGCE), which started on Stanford’s 1,200-acre biological preserve in 1997. Since 1998, this grassland ecosystem has been outfitted with an ecologist’s version of a microclimate controller (complete with CO2 pumps, heaters, and irrigation tubing) and subjected to experimentally controlled atmospheric, climatic, and nutrient conditions. (This study examines the experiment’s first five years.) To quantify the grassland response to these treatments, the authors estimated net primary production, or NPP (the amount of carbon left over after cellular respiration) by measuring shoot and root growth in 36 circular plots scattered across roughly two acres. The strongest effects on grassland production came from elevated levels of nitrogen (which typically reaches a fertilization limit). Elevated temperature, rainfall, and, surprisingly, CO2, had minimal impacts. These results suggest that increasing concentrations of atmospheric CO2 are not likely to increase growth of the roots and leaves of plants in this grassland. Why not? One possibility involves phosphorus. High levels of CO2 and nitrogen can reduce phosphorus concentrations or limit its uptake in these plants. Ongoing JRGCE experiments are exploring how this and other factors--such as grazing or shifts in seasonal events--might limit the growth effects of CO2.

It’s thought that ocean and terrestrial ecosystems have stored nearly half the carbon emissions produced by humans since the industrial revolution. If it turns out that other natural systems also fail to sequester as much carbon as scientists once thought, atmospheric CO2 concentrations will rise even faster than expected--with serious implications for future climate change.

Paul Ocampo | EurekAlert!
Further information:
http://www.plosbiology.org
http://www.plos.org

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>