Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Field tested: Grasslands won’t help buffer climate change as carbon dioxide levels rise

09.08.2005


Because grasslands and forests operate in complex feedback loops with both the atmosphere and soil, understanding how ecosystems respond to global changes in climate and element cycling is critical to predicting the range of global environmental changes--and attendant ecosystem responses--likely to occur. In a new study in the premier open access journal PLoS Biology Jeffrey Dukes, Christopher Field, and colleagues treated grassland plots to every possible combination of current or increased levels of four environmental factors--CO2, temperature, precipitation, and nitrogen influx--to simulate likely regional changes over the next 100 years. The results of their long-term experiment reveal that California grasslands, and ecosystems that respond similarly, are not likely to help buffer the rate of climate change by acting as a carbon "sink"--slowing the rise of CO2 levels by storing more carbon in new growth.



The experiments were part of the Jasper Ridge Global Change Experiment (JRGCE), which started on Stanford’s 1,200-acre biological preserve in 1997. Since 1998, this grassland ecosystem has been outfitted with an ecologist’s version of a microclimate controller (complete with CO2 pumps, heaters, and irrigation tubing) and subjected to experimentally controlled atmospheric, climatic, and nutrient conditions. (This study examines the experiment’s first five years.) To quantify the grassland response to these treatments, the authors estimated net primary production, or NPP (the amount of carbon left over after cellular respiration) by measuring shoot and root growth in 36 circular plots scattered across roughly two acres. The strongest effects on grassland production came from elevated levels of nitrogen (which typically reaches a fertilization limit). Elevated temperature, rainfall, and, surprisingly, CO2, had minimal impacts. These results suggest that increasing concentrations of atmospheric CO2 are not likely to increase growth of the roots and leaves of plants in this grassland. Why not? One possibility involves phosphorus. High levels of CO2 and nitrogen can reduce phosphorus concentrations or limit its uptake in these plants. Ongoing JRGCE experiments are exploring how this and other factors--such as grazing or shifts in seasonal events--might limit the growth effects of CO2.

It’s thought that ocean and terrestrial ecosystems have stored nearly half the carbon emissions produced by humans since the industrial revolution. If it turns out that other natural systems also fail to sequester as much carbon as scientists once thought, atmospheric CO2 concentrations will rise even faster than expected--with serious implications for future climate change.

Paul Ocampo | EurekAlert!
Further information:
http://www.plosbiology.org
http://www.plos.org

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>