Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanistic analytical models for long-distance seed dispersal by wind

04.08.2005


Long-distance dispersal (LDD) of wind-borne organisms is central to quantifying risk for transgenic escape and gene flow, control of pests and invasions, persistence in fragmented landscapes and species co-existence; yet LDD remains notoriously difficult to define, measure and model. This difficulty has shaped the current paradigm that the frequency and spatial extent of LDD events are almost impossible to predict.



In the September issue of The American Naturalist, G. G. Katul (Duke University) and colleagues introduce a mechanistic analytical model for estimating dispersal kernels of seeds and their escape probability from the canopy, using simplifications to well-established turbulent transport theories. The model parameters--wind statistics, seed release height, and seed terminal velocity--are clearly interpretable and can easily be measured independently of dispersal data, as compared to the synthetic parameters of equivalent phenomenological analytical models that necessitate dispersal data for calibration.

A necessary condition for LDD, seed uplifting and escape from the canopy, along with other key attributes of the dispersal kernel, were reproduced well by the model. To meet the increasing demand for proper evaluation of ecological risk reduction by employing less subjective and more transparent methods, mathematical models should make their assumptions explicit and should realistically incorporate the key biological and physical processes underlying environmental changes.

Carrie Olivia Adams | EurekAlert!
Further information:
http://www.journals.uchicago.edu/AN
http://www.uchicago.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>