Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Behavioural ecologists elucidated how peahens choose their mates, and why

01.08.2005


A peacock displaying his ocelli


Since Darwin, the peacock exhibiting an elongated tail composed of ocelli has been considered a prime example of the strength of sexual selection. Professor Marion Petrie’s classical studies have shown that females prefer males with a high number of ocelli. However, a remaining question concerning the role played by ocelli is how peahens value their number. New research published today in Ethology describes that females may actually assess ocelli density.

Adeline Loyau, Michel Saint Jalme and Gabriele Sorci of the National Museum of Natural History and the Laboratory of Evolutive Parasitology, Paris, have been studying sexual selection on free-ranging common peafowl to elucidate how females choose their mate. They took pictures of displaying peacocks to count the number of ocelli, and captured them to measure tail length. They also made behavioural observations to value male displaying activity and male mating success.

“Preferred males were those exhibiting the higher number of ocelli in the train, but surprisingly females seemed to prefer males with shorter tails. This was unpredictable because we also found that the longer the train, the more dominant the male,” they say. The female preference for both high number of ocelli and shorter tail gave the idea that females may actually prefer the visual perception of a dense cluster of ocelli than a diluted number of ocelli over a large surface. “We calculated the ocelli density and found that it did explain female choice.”



In the peacock, the ocelli density of the train can only be assessed by females when males spread their trains during the courtship display. “In this species, the expression of the ornament is modulated by the expression of the behaviour. To be chosen, a peacock has to be beautiful but also has to be able to show how beautiful he is. It is not surprising that female preference is also driven by male behaviour.” Indeed, they showed that male success was determined by both his ocelli density and his displaying activity. They investigated this preference further and demonstrated that these two cues provide peahens with information about male health. “In other words, it’s beneficial for a female to mate with handsome and sportive mates,” they conclude with humour, “because these males are in better health.”

Emily Davis | alfa
Further information:
http://www.blackwellpublishing.com

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>