Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


AERONET Mission Follow Up: Finding an Instrument’s Place Under the Sun


East Africa now has some new NASA technology to monitor the tiny particles in the air known as aerosols.

Sun Photometer Pointing at Sun and Taking Measurements -- A Sun photometer measures the intensity of sunlight arriving directly from the Sun. They are pointed directly at the Sun and measure direct sunlight. Since haze and aerosols block some direct sunlight, a Sun photometer is an ideal instrument for measuring haze. Credit: NASA

Broglio Space Center, Malinda, Africa -- This dish can receive Terra/MODIS and Aqua satellite data in direct broadcast mode. Credit: Charles Gatebe

Dr. Michael King, Senior Project Scientist of NASA’s Earth Observing System at NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md., led a group of NASA scientists that traveled through Kenya, Tanzania, Uganda and Eritrea from February 26 to March 18, 2005, to find locations to place a number of NASA’s AErosol RObotic NETwork (AERONET) sunphotometer.

A sunphotometer is an instrument which measures the intensity of the Sun’s light, when pointed directly at the Sun. Any aerosols and gases (haze) between the Sun and the photometer tend to decrease the Sun’s intensity. A hazy sky would read a lower intensity of sunlight and give a lower voltage reading on the photometer. A clear blue sky would result in a greater intensity and a higher voltage reading.

Michael King was accompanied by Dr. Charles Gatebe, Assistant Research Scientist at the University of Maryland-Baltimore County’s (UMBC) Goddard Earth Science and Technology Center (GEST); Brent Holben, GSFC Project Scientist for AERONET; and Dr. Ali Omar, scientist from NASA Langley Research Center, Hampton, Va. They traveled throughout East Africa to find the perfect location for the AERONET instruments. The AERONET sunphotometers will check to make sure satellite measurements are accurate, and add to the knowledge of tiny aerosol particles’ effects on climate change.

They visited various parks and nature sites, including Mbita Point Research and Training Centre on Lake Victoria, Nairobi National Park, Masawa, Eritrea on the Red Sea and the western Rift Valley in Uganda.

King’s team met with science and technology officials and lectured at universities, high schools and community organizations about the AERONET project and NASA’s interest in East Africa. Some of those institutions they spoke at included: University of Nairobi; Egerton Universtity, Kenya; Kiriti Secondary School, Nyeri; and Tanzania Meteorological Agency; Makerere University; Eritrea Ministry of Education.

At the conclusion of the mission, several ideal sites for the AERONET sunphotometers in East Africa were identified in Malindi, San Marco; Nairobi National Park, Nairobi and Mbita Lake Point, Lake Victoria. Makerere University Biological Field Station at Kibale National Park, Uganda and Eritrea Polytechnic University, Asmara, Eritrea. These AERONET sites will help fill in current gaps of missing information about aerosols.

NASA’s Earth Observatory Web site is full of information available and useful to people throughout Africa, and all over the world. To access the web site go to: . NASA scientists are soon to follow up this trip and continue to make certain that the AERONET instruments will be placed in the locations that best fit its requirements to observe areas sufficiently.

Rob Gutro | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>