Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Starvation is the norm for birds and mammals


It is difficult to find out whether animals in the wild have enough food, but research suggests that they are hungry most of the time, according to a new paper published in the American journal, Science, on Friday 22 July.

Researchers at the University of Reading also argue that this surprising conclusion could provide valuable new insights into animal behaviour.

The researchers undertook an analysis of a huge data base, the Global Population Dynamics Database (1), in which the changes over time in population densities of animals in many different environments are archived.

Using 1,780 of these ‘time series’ of mammals, birds, fish and insects, the Reading scientists have shown that populations are generally more abundant than their environments can support long term. Put together with earlier results that populations of birds and mammals are limited by their food supplies, it follows that these animals are generally short of food.

The first step of the analysis was to calculate the relationships between population’s growth rates and their densities. Natural populations of animals are expected to increase when their densities are less than the environment can support long term, because individuals then have abundant food for reproduction and maintenance. If their densities are higher, however, then population declines become inevitable.

“The precise relationship between a population’s growth rate and its density determines the way population density changes over time,” said Professor Richard Sibly, the lead researcher on the study. “The simplest possibility would be a straight-line relationship. This is not what was found.

“Rates of population growth are high at low population densities, as expected, but contrary to previous predictions, they decline rapidly with increasing population size, and then flatten out, for all four animal groups.

“This produces a strongly concave relationship between a population’s growth rate and its size. It is this that leads to the conclusion that animals will be found living at densities above those the environment can support long term.”

Professor Sibly suggests that such a conclusion could tell us a great deal about the ways animals compete with each other for food.

He said: “We are now investigating two theories. The first theory holds that the principal competition is between juveniles and adults. When population densities are low, reproduction is very successful and many juveniles are added to the population and many of them survive, so the population grows rapidly. On the other hand, when there are more animals than the environment can support, then it is the juveniles that suffer. The adults get what they need but most of the juveniles die. The result is that the population declines slowly as adults die, without any births to replace the deaths.

“The second theory applies when food is dispersed over territories. In the extreme case, the number of territories is fixed. When population densities are low, reproduction is very successful , so the population grows rapidly, as before. When there are more animals than the environment can support, then only some of the animals get territories. Since the number getting territories is fixed, the surplus population dies.”

Craig Hillsley | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>