Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starvation is the norm for birds and mammals

22.07.2005


It is difficult to find out whether animals in the wild have enough food, but research suggests that they are hungry most of the time, according to a new paper published in the American journal, Science, on Friday 22 July.



Researchers at the University of Reading also argue that this surprising conclusion could provide valuable new insights into animal behaviour.

The researchers undertook an analysis of a huge data base, the Global Population Dynamics Database (1), in which the changes over time in population densities of animals in many different environments are archived.


Using 1,780 of these ‘time series’ of mammals, birds, fish and insects, the Reading scientists have shown that populations are generally more abundant than their environments can support long term. Put together with earlier results that populations of birds and mammals are limited by their food supplies, it follows that these animals are generally short of food.

The first step of the analysis was to calculate the relationships between population’s growth rates and their densities. Natural populations of animals are expected to increase when their densities are less than the environment can support long term, because individuals then have abundant food for reproduction and maintenance. If their densities are higher, however, then population declines become inevitable.

“The precise relationship between a population’s growth rate and its density determines the way population density changes over time,” said Professor Richard Sibly, the lead researcher on the study. “The simplest possibility would be a straight-line relationship. This is not what was found.

“Rates of population growth are high at low population densities, as expected, but contrary to previous predictions, they decline rapidly with increasing population size, and then flatten out, for all four animal groups.

“This produces a strongly concave relationship between a population’s growth rate and its size. It is this that leads to the conclusion that animals will be found living at densities above those the environment can support long term.”

Professor Sibly suggests that such a conclusion could tell us a great deal about the ways animals compete with each other for food.

He said: “We are now investigating two theories. The first theory holds that the principal competition is between juveniles and adults. When population densities are low, reproduction is very successful and many juveniles are added to the population and many of them survive, so the population grows rapidly. On the other hand, when there are more animals than the environment can support, then it is the juveniles that suffer. The adults get what they need but most of the juveniles die. The result is that the population declines slowly as adults die, without any births to replace the deaths.

“The second theory applies when food is dispersed over territories. In the extreme case, the number of territories is fixed. When population densities are low, reproduction is very successful , so the population grows rapidly, as before. When there are more animals than the environment can support, then only some of the animals get territories. Since the number getting territories is fixed, the surplus population dies.”

Craig Hillsley | alfa
Further information:
http://www.reading.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>