Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Virtual trip to the heart of 400 million years old microfossils


Researchers from the Université de Montpellier II (France), the Institute of Geology of China, and the ESRF have been able to identify enigmatic fossils from Devonian (about 400 million years) as fructification of charophyte algae. Charophytes are land plants living in fresh water that still exist nowadays. This breakthrough allows researchers to better understand the evolution of these very old plants of the Paleozoic era and to have an improved overview of the climate at this period. The use of powerful X-rays beams to perform high resolution microtomography at the ESRF was one of the major keys in helping to understand the internal structure of these fossils. The results of this research are published in the latest issue of the American Journal of Botany with the title “New insights into Paleozoic charophyte morphology and phylogeny”.

These fossils belong to the enigmatic group of Sycidiales. Since their discovery, in 1934, no one really knew what they actually were. They had been defined as bracken “seeds”, corals or even small crustacean eggs. Thanks to high resolution X-ray synchrotron microtomography on beamline ID19 at the ESRF, the team of scientists succeeded in investigating the three-dimensional structure of these fossils. The samples they used ranged from 500 micron to 4 mm and originated from all around the world. Synchrotron radiation was fundamental for this study since it revealed microscopic details of the internal anatomy of these fossils without damaging them. At present, no other techniques allowing the study of these structures in a non-destructive way are available.

Charophytes fructifications exhibit a complex evolution. They all have quite a rounded shape, but the oldest ones display vertical structures on their outside surface, while the most recent ones present spiral ones. Fossils studied during this research are from the Paleozoic (or Primary era) and show these vertical structures. What surprised the researchers was the presence of an utricule, which was known before only in some Mesozoic (secondary era) charophytes. An utricule is a supplementary protective layer believed to protect the zygote (reproductive cell) against desiccation. The fact that such a structure was acquired during the evolution of these very old algae means that they probably lived in a harsh environment. This structure could be interpreted as an adaptation to strong seasonality with dry summers leading to ephemeral aquatic environments.

The use of X-ray synchrotron microtomography for this pioneering study on fossil algae opens new doors to paleontology. Indeed, charophytes represent only one group among numerous others of very small fossils. This kind of investigation should hence become a reference for non-destructive three-dimensional approach of small fossils.

Montserrat Capellas | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>