Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plankton can run, but can’t hide from basking sharks

21.07.2005


Basking sharks are much more canny predators than previously thought, ecologists have discovered. According to new research published online by the British Ecological Society’s Journal of Animal Ecology, basking sharks are able to reverse their normal pattern of diving at dawn and surfacing at dusk in order to foil the attempts of zooplankton trying to evade capture. As well as shedding new light on basking behaviour, the results have important implications for the conservation of shark species.



Dr David Sims of the Marine Biological Association and colleagues examined diving behaviour of four basking sharks (Cetorhinus maximus) - two in the shallow sea off Plymouth and two in the deep water off the shelf-edge southwest of Ireland and in northern Clyde Sea in Scotland - using pop-up tags that measure swimming depth, water temperature and light levels. The tags were programmed to detach themselves from the sharks at a set time, float to the surface and then drift with the currents like a “electronic messages in bottles”, before being washed up on beaches and found by the public.

Sims found that while the sharks in deep waters exhibited normal diving behaviour, tracking the zooplankton Calanus up to the surface at dusk and then downward at dawn, sharks in the western English Channel did the reverse. This is the first time this behaviour has been observed among plankton-eating sharks, the authors say, and shows that shark diving behaviour differs predictably between deep waters and in shallow seas close to plankton-rich boundaries in water temperature.


Although the mechanisms underlying this behaviour are unclear, the results indicate that the sharks are responding to changes in vertical migration by the zooplankton. Zooplankton have evolved a range of behaviours to try and avoid being eaten, sometimes staying at greater depths during the day and then feeding near the surface at night but at other times reversing this behaviour in an attempt to throw some of their predators (eg fish larvae and predatory invertebrates such as arrow worms) off their trail. However, this study shows that basking sharks seem to have rumbled them.

As well as shedding new light on behavioural strategies of plankton-feeding sharks and whales, the results have important implications for methods used to monitor populations of basking sharks and other species. “There is concern that the world’s two largest fish species, the whale shark Rhincodon typus and the basking shark, have low population levels as a result of human exploitation. Data on population sizes for these species are lacking, and diving behaviour is one factor contributing to surveying bias,” the authors say. Unless adjusted to account for these differences in diving patterns, current surveys could be over- or underestimating basking shark abundance by at least 10-fold.

Up to 10 metres long and weighing up to 7 tons - about the size of double-decker bus - the basking shark is the world’s second largest fish and feeds by filtering plankton from sea water through its enormous mouth. It is able to filter up to 2,000 tons of water per hour - the equivalent of an Olympic-sized swimming pool. It is harmless to humans, but has been netted and harpooned for its oil which was burned in lamps and more recently for its fins.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>