Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plankton can run, but can’t hide from basking sharks

21.07.2005


Basking sharks are much more canny predators than previously thought, ecologists have discovered. According to new research published online by the British Ecological Society’s Journal of Animal Ecology, basking sharks are able to reverse their normal pattern of diving at dawn and surfacing at dusk in order to foil the attempts of zooplankton trying to evade capture. As well as shedding new light on basking behaviour, the results have important implications for the conservation of shark species.



Dr David Sims of the Marine Biological Association and colleagues examined diving behaviour of four basking sharks (Cetorhinus maximus) - two in the shallow sea off Plymouth and two in the deep water off the shelf-edge southwest of Ireland and in northern Clyde Sea in Scotland - using pop-up tags that measure swimming depth, water temperature and light levels. The tags were programmed to detach themselves from the sharks at a set time, float to the surface and then drift with the currents like a “electronic messages in bottles”, before being washed up on beaches and found by the public.

Sims found that while the sharks in deep waters exhibited normal diving behaviour, tracking the zooplankton Calanus up to the surface at dusk and then downward at dawn, sharks in the western English Channel did the reverse. This is the first time this behaviour has been observed among plankton-eating sharks, the authors say, and shows that shark diving behaviour differs predictably between deep waters and in shallow seas close to plankton-rich boundaries in water temperature.


Although the mechanisms underlying this behaviour are unclear, the results indicate that the sharks are responding to changes in vertical migration by the zooplankton. Zooplankton have evolved a range of behaviours to try and avoid being eaten, sometimes staying at greater depths during the day and then feeding near the surface at night but at other times reversing this behaviour in an attempt to throw some of their predators (eg fish larvae and predatory invertebrates such as arrow worms) off their trail. However, this study shows that basking sharks seem to have rumbled them.

As well as shedding new light on behavioural strategies of plankton-feeding sharks and whales, the results have important implications for methods used to monitor populations of basking sharks and other species. “There is concern that the world’s two largest fish species, the whale shark Rhincodon typus and the basking shark, have low population levels as a result of human exploitation. Data on population sizes for these species are lacking, and diving behaviour is one factor contributing to surveying bias,” the authors say. Unless adjusted to account for these differences in diving patterns, current surveys could be over- or underestimating basking shark abundance by at least 10-fold.

Up to 10 metres long and weighing up to 7 tons - about the size of double-decker bus - the basking shark is the world’s second largest fish and feeds by filtering plankton from sea water through its enormous mouth. It is able to filter up to 2,000 tons of water per hour - the equivalent of an Olympic-sized swimming pool. It is harmless to humans, but has been netted and harpooned for its oil which was burned in lamps and more recently for its fins.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>